self.vgg = models.vgg19_bn(pretrained=True)
时间: 2024-01-06 20:07:08 浏览: 155
This line of code initializes a VGG19 model with batch normalization layers and loads pre-trained weights from the ImageNet dataset. The `models` module is from the PyTorch library, which contains pre-trained models for various tasks. The VGG19 model is a deep convolutional neural network architecture that is commonly used for image classification tasks. The 'bn' suffix indicates that batch normalization layers have been added to the original VGG19 architecture. The `pretrained=True` argument loads the pre-trained weights for the VGG19 model, which have been trained on the large-scale ImageNet dataset.
相关问题
from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)
这段代码是一个基于VGG的神经网络模型的定义,主要用于特征提取。其中包括两个类:`BackboneBase_VGG`和`Backbone_VGG`以及一个函数`build_backbone`。
`BackboneBase_VGG`类是VGG的基础类,用于构建VGG神经网络模型。它的初始化函数接受四个参数:`backbone`,`num_channels`,`name`和`return_interm_layers`,其中`backbone`表示VGG的主干网络,`num_channels`表示输出的通道数,`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。
`Backbone_VGG`类继承自`BackboneBase_VGG`类,主要用于构建一个冻结BatchNorm的VGG神经网络模型。它的初始化函数接受两个参数:`name`和`return_interm_layers`,其中`name`表示VGG的名称,`return_interm_layers`表示是否返回中间层的输出。这个类的主要作用是将`BackboneBase_VGG`类中的属性和方法进行实例化,然后通过调用父类的`__init__`方法进行初始化。
`build_backbone`函数是用于构建VGG神经网络模型的函数,它接受一个参数`args`,其中包含了VGG神经网络模型的一些参数。在这个函数中,会调用`Backbone_VGG`类来构建一个VGG神经网络模型,并将其返回。
最后,在`if __name__ == '__main__':`中,会创建一个`Backbone_VGG`类的实例对象,并传入参数`'vgg16'`和`True`进行初始化。
构建一个包含残差结构的VGG网络,使用pytorch实现
### 回答1:
可以使用PyTorch构建一个带有残差结构的VGG网络。可以自定义网络的结构,并在PyTorch的`nn`模块中实现残差块。
首先,我们可以定义一个残差块类,其中包含两个卷积层,一个快速批量归一化层和一个ReLU激活函数:
```
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu(out)
return out
```
然后,我们可以定义一个VGG网络类,其中包含若干个残差块和池化层:
```
class VGGWithResidual(nn.Module):
def __init__(self, num_classes=10):
super(VGGWithResidual, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(64, 128, 2)
self.layer2 = self._make_layer(128, 256, 2)
self.layer3 = self._make_layer(256, 512, 2)
self.avg_pool = nn.AdaptiveAvgPool2d((
### 回答2:
构建VGG网络时,我们可以在每一个卷积层后加入残差结构。残差结构是由残差块组成的,每个残差块包含两个卷积层。
首先导入所需的库和模块:
```python
import torch
import torch.nn as nn
import torchvision.models as models
```
定义残差块类:
```python
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
def forward(self, x):
residual = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
out += residual # 残差连接
out = self.relu(out)
return out
```
定义VGG网络类,其中包含残差结构:
```python
class VGG(nn.Module):
def __init__(self):
super(VGG, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(),
ResidualBlock(64, 64),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
ResidualBlock(128, 128),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(),
ResidualBlock(256, 256),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(),
ResidualBlock(512, 512),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(),
ResidualBlock(512, 512),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Linear(4096, 1000),
nn.Softmax(dim=1)
)
def forward(self, x):
out = self.features(x)
out = self.avgpool(out)
out = torch.flatten(out, 1)
out = self.classifier(out)
return out
```
实例化VGG网络模型:
```python
vgg = VGG()
```
接下来就可以使用该VGG网络模型进行训练和测试了。
### 回答3:
构建一个包含残差结构的VGG网络的步骤如下:
1. 引入必要的库和模块:首先需要引入PyTorch库,以及其他需要使用的模块,如torch.nn和torch.nn.functional。
2. 定义卷积块:根据VGG网络的结构,定义一个卷积块函数,该函数将包含多个卷积层和池化层。
3. 定义VGG网络:根据VGG网络的结构,定义一个包含多个卷积块的VGG网络类。在其中,使用残差结构可将卷积块的输出与输入相加。
4. 实例化VGG网络:通过实例化VGG网络类,创建一个VGG网络的模型。
5. 定义损失函数和优化器:选择适当的损失函数和优化器来训练网络。
6. 训练模型:使用训练数据集对模型进行训练,并在每个训练周期计算损失和准确率。
7. 评估模型:使用验证数据集对训练好的模型进行评估,并计算准确率。
8. 进行预测:使用测试数据集对模型进行预测,并输出预测结果。
以下是一个使用PyTorch实现的构建包含残差结构的VGG网络的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义卷积块
def conv_block(in_channels, out_channels, kernel_size=3, stride=1, padding=1):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding),
nn.ReLU(inplace=True)
)
# 定义VGG网络
class VGG(nn.Module):
def __init__(self, num_classes=10):
super(VGG, self).__init__()
self.block1 = conv_block(3, 64)
self.block2 = conv_block(64, 128)
self.block3 = conv_block(128, 256)
self.fc = nn.Linear(256, num_classes)
def forward(self, x):
residual = x
out = self.block1(x)
out += residual # 残差结构
residual = out
out = self.block2(out)
out += residual # 残差结构
residual = out
out = self.block3(out)
out += residual # 残差结构
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
# 创建VGG网络的实例
model = VGG()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
# 训练模型
def train(model, criterion, optimizer, train_loader):
model.train()
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 评估模型
def evaluate(model, criterion, test_loader):
model.eval()
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
return accuracy
# 进行预测
def predict(model, test_loader):
model.eval()
with torch.no_grad():
predictions = []
for inputs in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
predictions.extend(predicted.tolist())
return predictions
```
以上是一个使用PyTorch实现的包含残差结构的VGG网络的简单示例,可以根据需要进行修改和扩展。
阅读全文