CBAM attention
时间: 2023-09-14 20:13:06 浏览: 143
CBAM Attention.py
CBAM attention是指Convolutional Block Attention Module的注意力机制。CBAM模块结合了空间和通道的注意力机制,与SE-Net不同,它不仅关注通道信息,还关注空间信息,从而可以获得更好的效果。CBAM模块的主要目标是通过使用注意力机制来提高网络的特征表达能力,即通过集中关注重要的特征并抑制不必要的特征来提高表达能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [深入理解CV中的Attention机制之CBAM](https://blog.csdn.net/qq_34554039/article/details/122892781)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [attention机制(SE-Net、CBAM及Triplet)](https://blog.csdn.net/weixin_40836993/article/details/109173862)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文