pytorch实现VAEGAN的代码
时间: 2023-10-26 21:13:06 浏览: 289
用Pytorch实现并行WaveGAN-python
下面是一个简单的pytorch实现VAEGAN的代码,仅供参考:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义VAEGAN的生成器
class Generator(nn.Module):
def __init__(self, latent_size):
super(Generator, self).__init__()
self.latent_size = latent_size
self.fc1 = nn.Linear(latent_size, 128)
self.fc2 = nn.Linear(128, 256)
self.fc3 = nn.Linear(256, 512)
self.fc4 = nn.Linear(512, 28*28)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.relu(self.fc3(x))
x = self.sigmoid(self.fc4(x))
return x.view(-1, 1, 28, 28)
# 定义VAEGAN的判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(1, 16, 3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, stride=2, padding=1)
self.fc = nn.Linear(64*4*4, 1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = x.view(-1, 64*4*4)
x = self.sigmoid(self.fc(x))
return x
# 定义VAEGAN的损失函数
class VAEGANLoss(nn.Module):
def __init__(self):
super(VAEGANLoss, self).__init__()
self.mse_loss = nn.MSELoss()
def forward(self, x, target, output, discriminator_output):
recon_loss = self.mse_loss(output, target)
adv_loss = -torch.log(discriminator_output + 1e-8).mean()
return recon_loss + adv_loss
# 定义训练函数
def train_vae_gan(generator, discriminator, train_loader, lr, latent_size, num_epochs):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator.to(device)
discriminator.to(device)
optimizer_g = optim.Adam(generator.parameters(), lr=lr)
optimizer_d = optim.Adam(discriminator.parameters(), lr=lr)
loss_fn = VAEGANLoss()
for epoch in range(num_epochs):
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
batch_size = data.size(0)
# 训练判别器
z = torch.randn(batch_size, latent_size).to(device)
fake_data = generator(z)
real_output = discriminator(data)
fake_output = discriminator(fake_data.detach())
d_loss = loss_fn(data, data, fake_data, fake_output)
optimizer_d.zero_grad()
d_loss.backward()
optimizer_d.step()
# 训练生成器
z = torch.randn(batch_size, latent_size).to(device)
fake_data = generator(z)
fake_output = discriminator(fake_data)
g_loss = loss_fn(fake_data, data, fake_data, fake_output)
optimizer_g.zero_grad()
g_loss.backward()
optimizer_g.step()
print('Epoch [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'
.format(epoch+1, num_epochs, d_loss.item(), g_loss.item()))
# 加载MNIST数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
# 定义超参数
lr = 0.0002
latent_size = 100
num_epochs = 50
# 创建VAEGAN模型并训练
generator = Generator(latent_size)
discriminator = Discriminator()
train_vae_gan(generator, discriminator, train_loader, lr, latent_size, num_epochs)
# 生成新的数据
z = torch.randn(10, latent_size).to(device)
fake_data = generator(z)
```
以上代码仅供参考,实际实现过程中还需要针对具体问题进行调整和优化。
阅读全文