现在有catboost和lgbm模型,如何集成两者 提高预测准确率,请给出python代码
时间: 2024-02-11 19:09:09 浏览: 150
可以使用两种集成方法:Stacking和Blending。
Stacking:将catboost和lgbm的预测结果作为特征输入到另一个机器学习模型中,例如XGBoost、Random Forest等。
下面是一个基本的Stacking代码示例:
```python
from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error
from catboost import CatBoostRegressor
import lightgbm as lgb
import numpy as np
# Load data and split into training and validation sets
X_train, X_val, y_train, y_val = ...
# Create base models
catboost = CatBoostRegressor(...)
lgbm = lgb.LGBMRegressor(...)
# Train base models on training set
catboost.fit(X_train, y_train)
lgbm.fit(X_train, y_train)
# Generate predictions on validation set
catboost_preds = catboost.predict(X_val)
lgbm_preds = lgbm.predict(X_val)
# Create new features with base model predictions
X_val_new = np.column_stack((catboost_preds, lgbm_preds))
# Train meta model on new features and true labels
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
meta_model = XGBRegressor(...)
for train_idx, val_idx in kfold.split(X_val_new):
X_train_fold, y_train_fold = X_val_new[train_idx], y_val[train_idx]
X_val_fold, y_val_fold = X_val_new[val_idx], y_val[val_idx]
meta_model.fit(X_train_fold, y_train_fold)
# Generate final predictions on test set
catboost_test_preds = catboost.predict(X_test)
lgbm_test_preds = lgbm.predict(X_test)
X_test_new = np.column_stack((catboost_test_preds, lgbm_test_preds))
final_preds = meta_model.predict(X_test_new)
```
Blending:将catboost和lgbm的预测结果加权平均,作为最终预测结果。
下面是一个基本的Blending代码示例:
```python
from sklearn.metrics import mean_squared_error
from catboost import CatBoostRegressor
import lightgbm as lgb
import numpy as np
# Load data and split into training and validation sets
X_train, X_val, y_train, y_val = ...
# Create base models
catboost = CatBoostRegressor(...)
lgbm = lgb.LGBMRegressor(...)
# Train base models on training set
catboost.fit(X_train, y_train)
lgbm.fit(X_train, y_train)
# Generate predictions on validation set
catboost_preds = catboost.predict(X_val)
lgbm_preds = lgbm.predict(X_val)
# Combine predictions with weights
final_preds = 0.5 * catboost_preds + 0.5 * lgbm_preds
# Calculate RMSE
rmse = np.sqrt(mean_squared_error(y_val, final_preds))
```
阅读全文