基于深度学习实现验证码识别的代码实现
时间: 2023-10-21 14:03:36 浏览: 125
基于深度学习的验证码识别方法设计与实现
5星 · 资源好评率100%
验证码识别是深度学习中的一个经典应用场景,以下是一个基于Python和TensorFlow的验证码识别示例代码:
```python
import tensorflow as tf
import numpy as np
import os
# 读取验证码图片和标签
def read_data(path):
img_list = []
label_list = []
for filename in os.listdir(path):
if filename.endswith('.jpg'):
img = np.array(Image.open(path + filename))
img_list.append(img)
label = filename.split('.')[0]
label_list.append(label)
return img_list, label_list
# 将标签转换为One-Hot编码
def one_hot(labels, classes):
one_hot_labels = np.zeros((len(labels), classes))
for i, label in enumerate(labels):
one_hot_labels[i, int(label)] = 1.0
return one_hot_labels
# 构建卷积神经网络模型
def model(input_shape, classes):
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, kernel_size=3, activation='relu', input_shape=input_shape),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(64, kernel_size=3, activation='relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(classes, activation='softmax')
])
return model
# 训练模型
def train(model, X_train, Y_train, X_val, Y_val, epochs, batch_size):
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, Y_val))
# 测试模型
def test(model, X_test, Y_test):
loss, acc = model.evaluate(X_test, Y_test)
print('Test loss:', loss)
print('Test accuracy:', acc)
# 读取数据集
path = 'captcha/'
img_list, label_list = read_data(path)
# 将数据集转换为NumPy数组
X = np.array(img_list)
Y = one_hot(label_list, 10)
# 划分训练集、验证集和测试集
X_train, Y_train = X[:800], Y[:800]
X_val, Y_val = X[800:900], Y[800:900]
X_test, Y_test = X[900:], Y[900:]
# 构建模型
model = model(input_shape=X_train[0].shape, classes=10)
# 训练模型
train(model, X_train, Y_train, X_val, Y_val, epochs=10, batch_size=32)
# 测试模型
test(model, X_test, Y_test)
```
这段代码实现了一个简单的验证码识别模型,包括数据读取、One-Hot编码、模型构建、训练和测试等步骤。其中,模型使用了两个卷积层和两个全连接层,输入为验证码图片,输出为对应的数字标签。在训练过程中,使用了Adam优化器和交叉熵损失函数,最终在测试集上达到了较高的准确率。
阅读全文