Hadoop 倒排索引的Java程序
时间: 2023-07-06 15:16:33 浏览: 139
Hadoop倒排索引是一种常见的分布式计算应用,它可以高效地处理大规模的文本数据,并生成倒排索引。下面是一个基于Java实现的Hadoop倒排索引程序的示例代码:
```java
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class InvertedIndex {
public static class TokenizerMapper extends Mapper<Object, Text, Text, Text> {
private Text word = new Text();
private Text docID = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
String[] line = value.toString().split("\t");
String id = line[0];
String text = line[1];
docID.set(id);
StringTokenizer itr = new StringTokenizer(text);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, docID);
}
}
}
public static class IntSumReducer extends Reducer<Text, Text, Text, Text> {
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for (Text val : values) {
sb.append(val.toString()).append(",");
}
context.write(key, new Text(sb.toString()));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "inverted index");
job.setJarByClass(InvertedIndex.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
该程序包含两个Mapper和Reducer类。第一个Mapper类用于将输入文本数据切分成单词,并将单词作为Key,文档ID作为Value输出。第一个Reducer类用于将相同单词的文档ID合并为一个字符串,并将单词作为Key,文档ID字符串作为Value输出。在第一个Mapper和Reducer之后,可以添加多个Mapper和Reducer进行进一步的处理和优化。
要运行该程序,可以使用以下命令:
```
hadoop jar InvertedIndex.jar InvertedIndex input output
```
其中,InvertedIndex.jar是程序的打包文件,input是输入数据的路径,output是输出结果的路径。
阅读全文