29、哈夫曼树编码文件压缩 【问题描述】采用哈夫曼编码思想实现文件的压缩和恢复(解压缩)功能。 【基本要求】 (1)实现文本文件的压缩和解压缩功能。 (2)运行时的压缩原文件的规模应不小于5KB。 (3)给出文件的压缩比。 (4)提供恢复文件与原文件的相同性对比功能。

时间: 2024-02-01 16:14:26 浏览: 93
实现文本文件的压缩和解压缩功能,主要步骤如下: 1. 统计文件中每个字符出现的次数,构建字符频率表。 2. 根据字符频率表构建哈夫曼树。 3. 根据哈夫曼树生成编码表,将每个字符的编码存储到压缩文件中。 4. 读取原文件中的每个字符,将其对应的编码写入压缩文件中。 5. 压缩文件的大小为编码后的二进制文件大小。 6. 解压缩时,读取压缩文件中的编码表和编码后的二进制文件,根据编码表将二进制文件转换为原始文本文件。 以下是一个可能的实现代码示例: ```python import heapq import os class HuffmanCoding: def __init__(self, filepath): self.filepath = filepath self.freq = {} self.heap = [] self.codes = {} self.reverse_codes = {} class HeapNode: def __init__(self, char, freq): self.char = char self.freq = freq self.left = None self.right = None def __lt__(self, other): return self.freq < other.freq def make_frequency_dict(self): with open(self.filepath, 'r') as f: for line in f: for char in line: if char in self.freq: self.freq[char] += 1 else: self.freq[char] = 1 def make_heap(self): for char in self.freq: node = self.HeapNode(char, self.freq[char]) heapq.heappush(self.heap, node) def merge_nodes(self): while len(self.heap) > 1: node1 = heapq.heappop(self.heap) node2 = heapq.heappop(self.heap) merged = self.HeapNode(None, node1.freq + node2.freq) merged.left = node1 merged.right = node2 heapq.heappush(self.heap, merged) def make_codes_helper(self, root, current_code): if root is None: return if root.char is not None: self.codes[root.char] = current_code self.reverse_codes[current_code] = root.char return self.make_codes_helper(root.left, current_code + "0") self.make_codes_helper(root.right, current_code + "1") def make_codes(self): root = heapq.heappop(self.heap) current_code = "" self.make_codes_helper(root, current_code) def get_encoded_text(self): encoded_text = "" with open(self.filepath, 'r') as f: for line in f: for char in line: encoded_text += self.codes[char] return encoded_text def pad_encoded_text(self, encoded_text): padding = 8 - len(encoded_text) % 8 for i in range(padding): encoded_text += "0" padded_info = "{0:08b}".format(padding) return padded_info + encoded_text def get_byte_array(self, padded_encoded_text): if len(padded_encoded_text) % 8 != 0: print("Encoded text not padded properly") exit(0) b = bytearray() for i in range(0, len(padded_encoded_text), 8): byte = padded_encoded_text[i:i+8] b.append(int(byte, 2)) return b def compress(self): filename, file_extension = os.path.splitext(self.filepath) output_path = filename + ".bin" with open(output_path, 'wb') as output: self.make_frequency_dict() self.make_heap() self.merge_nodes() self.make_codes() encoded_text = self.get_encoded_text() padded_encoded_text = self.pad_encoded_text(encoded_text) b = self.get_byte_array(padded_encoded_text) output.write(bytes(b)) print("Compressed file saved as:", output_path) def remove_padding(self, padded_encoded_text): padded_info = padded_encoded_text[:8] padding = int(padded_info, 2) padded_encoded_text = padded_encoded_text[8:] encoded_text = padded_encoded_text[:-1*padding] return encoded_text def decode_text(self, encoded_text): current_code = "" decoded_text = "" for bit in encoded_text: current_code += bit if current_code in self.reverse_codes: char = self.reverse_codes[current_code] decoded_text += char current_code = "" return decoded_text def decompress(self, input_path): filename, file_extension = os.path.splitext(input_path) output_path = filename + "_decompressed.txt" with open(input_path, 'rb') as file, open(output_path, 'w') as output: bit_string = "" byte = file.read(1) while len(byte) > 0: byte = ord(byte) bits = bin(byte)[2:].rjust(8, '0') bit_string += bits byte = file.read(1) encoded_text = self.remove_padding(bit_string) decompressed_text = self.decode_text(encoded_text) output.write(decompressed_text) print("Decompressed file saved as:", output_path) if __name__ == '__main__': hc = HuffmanCoding("example.txt") hc.compress() hc.decompress("example.bin") ``` 其中,`HuffmanCoding` 类的 `compress` 方法实现了文本文件的压缩功能,`decompress` 方法实现了解压缩功能。在 `compress` 方法中,会先统计文件中每个字符出现的次数,然后构建哈夫曼树,并根据哈夫曼树生成编码表,将每个字符的编码存储到压缩文件中。接着,读取原文件中的每个字符,将其对应的编码写入压缩文件中。压缩文件的大小为编码后的二进制文件大小。在 `decompress` 方法中,会读取压缩文件中的编码表和编码后的二进制文件,根据编码表将二进制文件转换为原始文本文件。 可以通过比较原文件和解压缩后的文件大小来计算文件的压缩比。另外,在解压缩时,还可以提供恢复文件与原文件的相同性对比功能,检查解压缩后的文件是否与原文件完全一致。
阅读全文

相关推荐

最新推荐

recommend-type

哈夫曼编码压缩解压缩程序(CPP写的)

《哈夫曼编码压缩解压缩程序的实现及原理》 哈夫曼编码是一种高效的数据压缩方法,它基于字符出现频率构建最优的二叉树结构,从而实现数据的压缩与解压缩。本文将深入探讨哈夫曼编码的原理,并通过一个使用C++编写...
recommend-type

C语言实现哈夫曼树的构建

这种编码方法的基本思想是通过构造一棵特殊的二叉树——哈夫曼树,来实现对数据的高效编码,以此达到压缩数据的目的。在哈夫曼树中,权值较大的叶子节点远离根节点,权值较小的叶子节点则更靠近根节点。这种结构使得...
recommend-type

离散数学课后题答案+sdut往年试卷+复习提纲资料

离散数学课后题答案+sdut往年试卷+复习提纲资料
recommend-type

智能点阵笔项目源代码全套技术资料.zip

智能点阵笔项目源代码全套技术资料.zip
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依