已知四阶矩阵A不可逆,E是与A同阶的单位矩阵,且满足 |E+2A|=0,|2E-k|= 0.1-E+A|=0. 求 B=A^2-2A+3E 的特征值.
时间: 2023-11-01 10:26:21 浏览: 76
首先,由于矩阵 $A$ 不可逆,那么它的行列式 $|A|$ 必然为 $0$。又因为 $|E+2A|=0$,所以 $-2$ 是 $A$ 的一个特征值;同理,$0.1$ 和 $1$ 分别是矩阵 $2E-k$ 和 $E+A$ 的特征值。
接下来我们来计算 $B=A^2-2A+3E$ 的特征值。首先有:
$$
B=A^2-2A+3E=(A-E)^2+2E
$$
因为 $A$ 不可逆,所以 $0$ 是 $A$ 的一个特征值,从而 $-1$ 是 $A-E$ 的一个特征值,所以 $(-1)^2=1$ 是 $(A-E)^2$ 的一个特征值。又因为 $2E$ 是一个对角矩阵,所以它的特征值就是对角线上的元素,即 $2$。因此,$B$ 的特征值为:
$$
\lambda_B=\lambda_{(A-E)^2}+2=1+2=3
$$
因此,矩阵 $B$ 的特征值为 $3$。
阅读全文