python 卡尔曼滤波
时间: 2023-08-22 13:10:52 浏览: 121
卡尔曼滤波(Kalman Filter)是一种用于估计系统状态的数学算法,特别适用于具有噪声和不确定性的动态系统。其基本原理包括预测和更新两个步骤。预测步骤利用系统的动力学模型和上一时刻的状态来预测当前状态,而更新步骤则通过将预测值与测量值进行加权平均来更新状态估计。 - position[i-1]) + np.random.normal(0, 50) # 模拟从IMU读取出的速度
position_predict = position_predict + dv # 利用上个时刻的位置和速度预测当前位置
predict_var = v_std**2 # 更新预测数据的方差
# 下面是Kalman滤波
position_predict = position_predict * odo_var / (predict_var + odo_var)
position_noise[i = position_noise[i * predict_var / (predict_var + odo_var)
predict_var = (predict_var * odo_var) / (predict_var + odo_var)**2
predicts.append(position_predict)
plt.plot(t, predicts, label='kalman filtered position')
plt.legend()
plt.show()
```
这段代码实现了一个简单的一维卡尔曼滤波器,用于估计导弹的位置。通过与真实位置进行对比,可以看到卡尔曼滤波器对噪声进行了滤波,从而提高了位置估计的精度。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [卡尔曼滤波算法——基本原理及举例(python实现radar数据滤波)](https://blog.csdn.net/Williamcsj/article/details/125085163)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [通俗讲解卡尔曼滤波Kalman Filter原理及Python实现教程](https://blog.csdn.net/qq_28077617/article/details/115961021)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文