python编写代码,利用yolov8模型对文件夹中的所有图像进行推理,并将推理结果生成voc格式xml格式
时间: 2024-11-17 18:29:34 浏览: 4
win10+python环境OpenVINO推理加速自己训练的yolov5模型(csdn)————程序.pdf
5星 · 资源好评率100%
在Python中,要使用YOLOv8模型对文件夹中的图片进行推理并将结果保存为VOC格式XML,你可以按照以下步骤操作:
首先,你需要安装必要的库,如`yolov8`, `pandas`, 和`xml.etree.ElementTree`。可以使用pip来安装:
```bash
pip install yolov8 pandas xmltodict
```
然后,你可以参考以下代码示例:
```python
import os
import cv2
import numpy as np
from PIL import Image
import xml.etree.ElementTree as ET
from xml.dom.minidom import parseString
from yolov8.yolo import YOLO
# 初始化YOLOv8实例
yolo = YOLO()
# 定义文件夹路径和输出文件夹
image_folder = 'path/to/your/image/folder'
output_folder = 'path/to/output/xml/folder'
# 遍历文件夹中的图片
for filename in os.listdir(image_folder):
if filename.endswith(".jpg") or filename.endswith(".png"):
# 读取图片
image_path = os.path.join(image_folder, filename)
img = cv2.imread(image_path)
# 进行预测并获取检测结果
boxes, _ = yolo.detect_image(img)
# 将检测结果转换为VOC格式XML
annotations = []
for box in boxes:
class_id, confidence, bbox = box
x, y, w, h = [int(coord) for coord in bbox]
annotation = {
'name': 'object',
'bndbox': {'xmin': x, 'ymin': y, 'xmax': x+w, 'ymax': y+h},
'confidence': str(confidence),
'class': str(class_id)
}
annotations.append(annotation)
# 创建XML元素
root = ET.Element('annotation')
folder = ET.SubElement(root, 'folder')
folder.text = os.path.basename(image_folder)
filename = ET.SubElement(root, 'filename')
filename.text = filename
path = ET.SubElement(root, 'path')
path.text = image_path
source = ET.SubElement(root, 'source')
database = ET.SubElement(source, 'database')
database.text = 'Unknown'
size = ET.SubElement(root, 'size')
width = ET.SubElement(size, 'width')
width.text = str(img.shape[1])
height = ET.SubElement(size, 'height')
height.text = str(img.shape[0])
depth = ET.SubElement(size, 'depth')
depth.text = '3'
objects = ET.SubElement(root, 'object')
for obj in annotations:
ET.SubElement(objects, 'object').attrib.update(obj)
# 编码XML并保存到指定位置
tree = ET.ElementTree(root)
pretty_xml = parseString(ET.tostring(tree.getroot(), encoding='utf8', method='xml')).toprettyxml(indent=" ")
output_file = os.path.join(output_folder, filename.split('.')[0] + '.xml')
with open(output_file, 'w') as f:
f.write(pretty_xml)
print(f"Done! Results saved to {output_folder}.")
```
运行这段代码后,会创建对应的XML文件,存储了YOLOv8在每个图像上检测出的对象信息。
阅读全文