cnn-transformer结构图
时间: 2023-09-02 14:14:27 浏览: 185
MATLAB实现CNN-LSTM-Attention多输入单输出回归预测(完整源码和数据)
5星 · 资源好评率100%
抱歉,我无法提供图片,但是我可以向您描述CNN-Transformer结构的一般概念。
CNN-Transformer结构是一种结合了卷积神经网络(CNN)和Transformer模型的混合架构。它的目标是克服CNN和Transformer各自的局限性,以获得更好的性能。
通常,CNN-Transformer结构首先使用CNN层来提取输入数据中的局部特征。CNN层通过卷积操作在输入数据上进行滑动窗口操作,从而捕获局部的空间特征。
接下来,提取的局部特征被输入到Transformer模型中。Transformer模型主要由自注意力机制和前馈神经网络组成,用于捕获全局的上下文信息。
在CNN-Transformer结构中,自注意力机制可以帮助模型学习输入数据不同位置之间的依赖关系,并捕捉长距离依赖。而CNN层则可以保留一些局部的细节特征。
整体而言,CNN-Transformer结构可以通过融合局部特征和全局上下文信息来提升模型性能,适用于许多任务,如图像分类、目标检测等。
阅读全文