fréchet inception distance FID python代码
时间: 2024-06-08 11:05:54 浏览: 246
Fréchet Inception Distance (FID) 是用于衡量两个图像数据集之间的差异性的一种常用指标。该指标结合了生成模型的拟合能力以及真实数据集的特征分布情况。下面是使用 Python 实现 FID 的代码:
```python
import numpy as np
import tensorflow as tf
import os
from scipy import linalg
import pathlib
import urllib
import warnings
import zipfile
import functools
import time
import cv2
# 加载 InceptionV3 模型
def load_model():
model = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet')
return model
# 从 URL 下载文件
def download(url, target_directory):
filename = url.split('/')[-1]
filepath = tf.keras.utils.get_file(filename, origin=url, cache_dir=target_directory)
return filepath
# 解压 ZIP 文件
def extract_zip(zip_path, target_directory):
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(target_directory)
# 获取图像特征向量
def get_activations(images, model):
# 将像素值缩放到 [-1, 1] 的范围内
images = (images - 127.5) / 127.5
# 获取特征向量
activations = model.predict(images)
return activations
# 计算 FID
def calculate_fid(real_images, fake_images, model):
# 获取真实图像特征向量
real_activations = get_activations(real_images, model)
# 获取生成图像特征向量
fake_activations = get_activations(fake_images, model)
# 计算均值和协方差
mu1, sigma1 = np.mean(real_activations, axis=0), np.cov(real_activations, rowvar=False)
mu2, sigma2 = np.mean(fake_activations, axis=0), np.cov(fake_activations, rowvar=False)
# 计算 FID
diff = mu1 - mu2
covmean = linalg.sqrtm(sigma1.dot(sigma2))
if np.iscomplexobj(covmean):
covmean = covmean.real
fid = diff.dot(diff) + np.trace(sigma1 + sigma2 - 2.0 * covmean)
return fid
# 加载 InceptionV3 模型
model = load_model()
# 下载预训练的 InceptionV3 模型权重
url = 'https://storage.googleapis.com/tensorflow/keras-applications/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5'
target_directory = '/tmp'
weights_file = download(url, target_directory)
# 加载预训练的 InceptionV3 模型权重
model.load_weights(weights_file)
# 加载图像数据集
real_images = []
fake_images = []
# 加载真实图像
real_images_dir = '/path/to/real/images'
for filename in os.listdir(real_images_dir):
image = cv2.imread(os.path.join(real_images_dir, filename))
image = cv2.resize(image, (299, 299))
real_images.append(image)
# 加载生成图像
fake_images_dir = '/path/to/fake/images'
for filename in os.listdir(fake_images_dir):
image = cv2.imread(os.path.join(fake_images_dir, filename))
image = cv2.resize(image, (299, 299))
fake_images.append(image)
# 计算 FID
fid = calculate_fid(np.array(real_images), np.array(fake_images), model)
print('FID:', fid)
```
需要注意的是,在计算 FID 之前,需要对图像进行预处理,将像素值缩放到 [-1, 1] 的范围内,并将图像缩放到 InceptionV3 模型的输入尺寸(299x299)。另外,由于计算 FID 的过程中需要计算图像的特征向量和协方差矩阵,因此建议使用 GPU 进行计算。
阅读全文