生成粒子群优化bP神经网络代码
时间: 2023-10-26 07:06:20 浏览: 113
以下是使用粒子群优化算法训练BP神经网络的Python代码:
首先,我们需要导入必要的库和模块:
```python
import numpy as np
import random
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
```
接下来,我们需要定义一些常量和参数:
```python
# 常量
INPUT_LAYER_SIZE = 4 # 输入层大小
HIDDEN_LAYER_SIZE = 10 # 隐藏层大小
OUTPUT_LAYER_SIZE = 3 # 输出层大小
# 粒子群优化算法参数
SWARM_SIZE = 30 # 粒子数量
MAX_ITERATION = 50 # 最大迭代次数
W = 0.729 # 惯性权重
C1 = 1.49445 # 自我学习因子
C2 = 1.49445 # 社会学习因子
```
然后,我们需要定义神经网络模型和粒子群优化算法:
```python
# 定义神经网络模型
class NeuralNetwork:
def __init__(self, w1, w2):
self.w1 = w1
self.w2 = w2
def sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def forward(self, X):
z2 = np.dot(X, self.w1)
a2 = self.sigmoid(z2)
z3 = np.dot(a2, self.w2)
y = self.sigmoid(z3)
return y
# 定义粒子群优化算法
class PSO:
def __init__(self, swarm_size, max_iteration, w, c1, c2):
self.swarm_size = swarm_size
self.max_iteration = max_iteration
self.w = w
self.c1 = c1
self.c2 = c2
def train(self, X, y):
# 随机初始化粒子位置和速度
swarm_position = np.zeros((self.swarm_size, (INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE + (HIDDEN_LAYER_SIZE+1)*OUTPUT_LAYER_SIZE))
swarm_velocity = np.zeros((self.swarm_size, (INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE + (HIDDEN_LAYER_SIZE+1)*OUTPUT_LAYER_SIZE))
for i in range(self.swarm_size):
w1 = np.random.rand(INPUT_LAYER_SIZE+1, HIDDEN_LAYER_SIZE)
w2 = np.random.rand(HIDDEN_LAYER_SIZE+1, OUTPUT_LAYER_SIZE)
swarm_position[i] = np.concatenate((w1.ravel(), w2.ravel()))
swarm_velocity[i] = np.zeros_like(swarm_position[i])
# 计算粒子适应度
fitness = np.zeros(self.swarm_size)
for i in range(self.swarm_size):
w1 = swarm_position[i][:(INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE].reshape(INPUT_LAYER_SIZE+1, HIDDEN_LAYER_SIZE)
w2 = swarm_position[i][(INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE:].reshape(HIDDEN_LAYER_SIZE+1, OUTPUT_LAYER_SIZE)
nn = NeuralNetwork(w1, w2)
y_pred = nn.forward(X)
fitness[i] = np.mean(np.abs(y_pred - y))
# 找到全局最优解和个体最优解
p_best = swarm_position.copy()
fitness_p_best = fitness.copy()
g_best = swarm_position[np.argmin(fitness)]
fitness_g_best = np.min(fitness)
# 迭代优化
for i in range(self.max_iteration):
for j in range(self.swarm_size):
# 更新速度和位置
swarm_velocity[j] = self.w*swarm_velocity[j] + self.c1*random.random()*(p_best[j]-swarm_position[j]) + self.c2*random.random()*(g_best-swarm_position[j])
swarm_position[j] = swarm_position[j] + swarm_velocity[j]
# 计算适应度
w1 = swarm_position[j][:(INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE].reshape(INPUT_LAYER_SIZE+1, HIDDEN_LAYER_SIZE)
w2 = swarm_position[j][(INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE:].reshape(HIDDEN_LAYER_SIZE+1, OUTPUT_LAYER_SIZE)
nn = NeuralNetwork(w1, w2)
y_pred = nn.forward(X)
fitness_j = np.mean(np.abs(y_pred - y))
# 更新个体最优解和全局最优解
if fitness_j < fitness_p_best[j]:
p_best[j] = swarm_position[j]
fitness_p_best[j] = fitness_j
if fitness_j < fitness_g_best:
g_best = swarm_position[j]
fitness_g_best = fitness_j
# 返回全局最优解
w1 = g_best[:(INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE].reshape(INPUT_LAYER_SIZE+1, HIDDEN_LAYER_SIZE)
w2 = g_best[(INPUT_LAYER_SIZE+1)*HIDDEN_LAYER_SIZE:].reshape(HIDDEN_LAYER_SIZE+1, OUTPUT_LAYER_SIZE)
nn = NeuralNetwork(w1, w2)
return nn
```
最后,我们需要加载数据集并进行预处理,并且使用粒子群优化算法训练神经网络:
```python
# 加载数据集并进行预处理
iris = load_iris()
X = iris.data
y = iris.target
scaler = StandardScaler()
X = scaler.fit_transform(X)
y_onehot = np.zeros((len(y), OUTPUT_LAYER_SIZE))
for i in range(len(y)):
y_onehot[i][y[i]] = 1
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y_onehot, test_size=0.3, random_state=0)
# 使用粒子群优化算法训练神经网络
pso = PSO(SWARM_SIZE, MAX_ITERATION, W, C1, C2)
nn = pso.train(X_train, y_train)
# 在测试集上测试神经网络
y_pred = nn.forward(X_test)
y_pred = np.argmax(y_pred, axis=1)
accuracy = np.mean(y_pred == np.argmax(y_test, axis=1))
print("Accuracy:", accuracy)
```
这样,我们就完成了使用粒子群优化算法训练BP神经网络的代码,可以使用iris数据集进行测试。
阅读全文