给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下: struct Node { int val; Node *left; Node *right; Node *next; } 填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。 初始状态下,所有 next 指针都被设置为 NULL。 进阶: 你只能使用常量级额外空间。 使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。 示例: 输入:root = [1,2,3,4,5,6,7] 输出:[1,#,2,3,#,4,5,6,7,#] 解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。 提示: 树中节点的数量少于 4096 -1000 <= node.val <= 1000
时间: 2024-01-16 15:05:37 浏览: 183
这道题可以使用层次遍历的方法来解决,但是需要O(n)的空间复杂度。进阶要求常量级额外空间,可以使用递归的方法来解决。
对于每个节点,其左子节点的next指针指向其右子节点,如果该节点有next节点,则其右子节点的next指针指向其next节点的左子节点。这个过程可以通过递归实现。
代码如下:
```python
class Solution:
def connect(self, root: 'Node') -> 'Node':
if not root:
return root
if root.left:
root.left.next = root.right
if root.next:
root.right.next = root.next.left
self.connect(root.left)
self.connect(root.right)
return root
```
时间复杂度为O(n),空间复杂度为O(1)。
阅读全文