卷积神经网络去噪代码
时间: 2024-01-21 07:03:22 浏览: 99
matlab卷积神经网络去噪代码-ImageDenoise:基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三
根据提供的引用内容,以下是一个使用深度卷积神经网络(DnCNN)进行图像去噪的代码示例:
```python
import torch
import torch.nn as nn
# 定义DnCNN模型
class DnCNN(nn.Module):
def __init__(self, num_layers=17, num_channels=64):
super(DnCNN, self).__init__()
layers = []
layers.append(nn.Conv2d(1, num_channels, kernel_size=3, padding=1))
layers.append(nn.ReLU(inplace=True))
for _ in range(num_layers - 2):
layers.append(nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1))
layers.append(nn.BatchNorm2d(num_channels))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(num_channels, 1, kernel_size=3, padding=1))
self.dncnn = nn.Sequential(*layers)
def forward(self, x):
out = self.dncnn(x)
return out
# 加载模型
model = DnCNN()
model.load_state_dict(torch.load('dncnn_model.pth'))
# 图像去噪
def denoise_image(image):
image = torch.unsqueeze(torch.Tensor(image), 0)
denoised_image = model(image)
denoised_image = denoised_image.squeeze().detach().numpy()
return denoised_image
```
请注意,上述代码仅为示例,实际使用时需要根据具体的数据集和需求进行适当的修改和调整。
阅读全文