def add_gaussian_noise(image, percent, mean=0, var=0.04): # 将图像转为浮点型 image = np.array(image / 255, dtype=float) # 计算噪声数量 num = int(percent * image.size) # 生成坐标和噪声 coords = np.random.randint(0, image.size, num) noise = np.random.normal(mean, var ** 0.5, num) # 添加噪声 image.flat[coords] += noise return image percent = 0.01 # 噪声比例 out = add_gaussian_noise(grayImage, percent) if out.min() < 0: low_clip = -1. else: low_clip = 0. out = np.clip ( out , low_clip ,1) gasuss_image = np.uint8(out *255)简化以上代码
时间: 2023-12-04 11:02:49 浏览: 78
以下是简化后的代码:
```
import numpy as np
def add_gaussian_noise(image, percent, mean=0, var=0.04):
image = image / 255.0
num = int(percent * image.size)
coords = np.random.randint(0, image.size, num)
noise = np.random.normal(mean, var ** 0.5, num)
image_flat = image.flatten()
image_flat[coords] += noise
image = np.clip(image_flat, 0, 1)
return np.uint8(image * 255)
percent = 0.01
out = add_gaussian_noise(grayImage, percent)
gasuss_image = out.astype(np.uint8)
```
这段代码的作用是给灰度图像添加高斯噪声。首先将图像转为浮点型,然后根据噪声比例计算需要添加的噪声数量。随机生成噪声坐标和噪声值,然后将噪声添加到图像中。最后将图像像素值限制在0到1之间,并将其转换为8位整数型。
相关问题
def add_gaussian_noise(image, percent, mean=0, var=0.04): # 将图像转为浮点型 image = np.array(image / 255, dtype=float) # 计算噪声数量 num = int(percent * image.size) # 生成坐标和噪声 coords = np.random.randint(0, image.size, num) noise = np.random.normal(mean, var ** 0.5, num) # 添加噪声 image.flat[coords] += noise return image % = 0.01 # 噪声比例 out = add_gaussian_noise(grayImage, percent) if out.min() < 0: low_clip = -1.否则:low_clip = 0。out = np.clip ( out , low_clip ,1) gasuss_image = np.uint8(out *255)简化以上代码
以下是简化后的代码:
```
import numpy as np
def add_gaussian_noise(image, percent, mean=0, var=0.04):
# 将图像转为浮点型
image = image / 255.0
# 计算噪声数量
num = int(percent * image.size)
# 生成坐标和噪声
coords = np.random.randint(0, image.size, num)
noise = np.random.normal(mean, var ** 0.5, num)
# 添加噪声
image.flat[coords] += noise
image = np.clip(image, 0, 1)
# 噪声比例
out = image * percent
gasuss_image = np.uint8(out * 255)
return gasuss_image
```
这个函数的作用是给灰度图像添加高斯噪声。其中,`image` 是一个灰度图像,`percent` 是噪声比例,`mean` 和 `var` 分别是高斯分布的均值和方差。函数首先将图像转为浮点型,并计算噪声数量。然后,随机生成噪声的坐标和噪声值,并将噪声添加到图像中。最后,将图像像素值限制在 0 到 1 之间,并将噪声比例乘以图像像素值,得到最终的带有噪声的图像。
# 加入高斯噪声(均值: mean ,方差: var ,比例: percent ) image = np.array ( grayImage /255, dtype = float ) # 图像加入噪声比例 percent = 0.01 num = int(percent * image.shape[0]*image.shape[1]) for i in range(num): temp1 = np.random.randint(image.shape[0]) temp2 = np.random.randint(image.shape[1]) mean=0 var=0.04 noise=np.random.normal(mean,var **0.5,1) image[temp1][temp2] += noise out = image请简化以上代码
以下是简化后的代码:
```
# 导入库
import numpy as np
# 定义函数
def add_gaussian_noise(image, percent, mean=0, var=0.04):
# 将图像转为浮点型
image = np.array(image / 255, dtype=float)
# 计算噪声数量
num = int(percent * image.size)
# 生成坐标和噪声
coords = np.random.randint(0, image.size, num)
noise = np.random.normal(mean, var ** 0.5, num)
# 添加噪声
image.flat[coords] += noise
return image
# 使用示例
grayImage = ... # 灰度图像
percent = 0.01 # 噪声比例
out = add_gaussian_noise(grayImage, percent)
```
阅读全文