# 准备数据 X = group3[['vis_min']].values y = group3['pm10'].values # 数据归一化 scaler = MinMaxScaler() X_scaled = scaler.fit_transform(X) y_scaled = scaler.fit_transform(y.reshape(-1, 1)) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled, test_size=0.2, random_state=42) # 定义模型 model = Sequential([ Dense(64, activation='relu', input_shape=(1,)), Dense(64, activation='relu'), Dense(1) ]) # 编译模型 model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(X_train, y_train, epochs=100, batch_size=32, verbose=0) # 在测试集上进行预测 y_pred = model.predict(X_test) # 反归一化预测结果 y_pred = scaler.inverse_transform(y_pred) # 打印拟合方程式和参数 weights = model.get_weights() # 打印拟合方程式和参数 a, b, c = weights[0][0][0].item(), weights[1][0][0].item(), weights[2][0][0].item() print('拟合方程式:y = {:.2f} * exp({:.2f} * x) + {:.2f}'.format(a, b, c)) print('参数:a = {:.2f}, b = {:.2f}, c = {:.2f}'.format(a, b, c)) # 绘制拟合曲线 x_range = np.linspace(X.min(), X.max(), 100).reshape(-1, 1) y_fit = a * np.exp(b * x_range) + c plt.scatter(X, y, c='r', label='原始数据') plt.plot(x_range, y_fit, 'g-', label='拟合曲线') plt.xlabel('能见度(km)') plt.ylabel('PM10浓度(μg/立方米)') plt.title('指数函数拟合') plt.legend() plt.show()

时间: 2024-03-29 09:37:33 浏览: 22
这段代码的作用是进行指数函数拟合,并绘制出拟合曲线。具体实现步骤如下: 1. 准备数据:从数据集中取出 `vis_min` 和 `pm10` 两列数据,分别赋值给 `X` 和 `y` 变量。 2. 数据归一化:使用 `MinMaxScaler` 函数对 `X` 和 `y` 进行归一化处理。 3. 划分训练集和测试集:使用 `train_test_split` 函数将数据集分为训练集和测试集。 4. 定义模型:使用 `Sequential` 函数定义一个顺序模型,其中包含三个全连接层,分别有 64 个神经元,激活函数为 ReLU。 5. 编译模型:使用 `compile` 函数对模型进行编译,指定优化器为 Adam,损失函数为 MSE。 6. 训练模型:使用 `fit` 函数对模型进行训练,指定训练次数为 100 次,每次训练的批次大小为 32。 7. 在测试集上进行预测:使用 `predict` 函数对测试集进行预测,得到预测结果 `y_pred`。 8. 反归一化预测结果:使用 `inverse_transform` 函数对 `y_pred` 进行反归一化处理。 9. 打印拟合方程式和参数:使用 `get_weights` 函数获取模型的参数,并将其打印出来。 10. 绘制拟合曲线:根据拟合方程式计算出拟合曲线的数据,并使用 `matplotlib` 库绘制出原始数据和拟合曲线。 总之,这段代码是一个完整的指数函数拟合的实现过程,以及可视化拟合结果的代码。
相关问题

train_df = X_train.loc[X_train.level_group == grp] train_users = train_df.index.values valid_df = X_test.loc[X_test.loc[X_test.level_group == grp]] valid_users = valid_df.index.values train_labels = labels.loc[labels.q==q_no].set_index('session').loc[train_users] valid_labels = labels.loc[labels.q == q_no].set_index('session').loc[valid_users]

这段代码的功能是根据某个组别(level_group)把训练数据(X_train)和测试数据(X_test)分别筛选出对应的数据,并用这些数据的索引(index)生成相应的训练用户(train_users)和测试用户(valid_users)列表。然后,根据题目编号(q_no)从标签数据(labels)中筛选出相应的标签,再根据训练用户和测试用户列表,从标签数据中分别选出相应的训练标签(train_labels)和测试标签(valid_labels)。

import pandas as pd inputfile1 = 'data/GoodsOrder.csv' inputfile2 = 'data/GoodsTypes.csv' # 读入数据 data = pd.read_csv(inputfile1,encoding = 'gbk') types = pd.read_csv(inputfile2,encoding = 'gbk') group = data.groupby(['Goods']).count().reset_index() group_sorted = group.sort_values('id',ascending = False).reset_index() # 总量 data_nums = data.shape[0] del group_sorted['index'] group_sorted.head()标解注释

这段代码的作用是从两个csv文件中读取数据,对商品订单数据进行分组统计并按照商品销量降序排列,最后输出排名前几的商品销量信息。 具体注释如下: ``` import pandas as pd # 指定两个数据文件的路径 inputfile1 = 'data/GoodsOrder.csv' inputfile2 = 'data/GoodsTypes.csv' # 读入两个数据文件 data = pd.read_csv(inputfile1, encoding='gbk') types = pd.read_csv(inputfile2, encoding='gbk') # 对商品订单数据按照商品名称进行分组统计,并计算每个商品的订单数量 group = data.groupby(['Goods']).count().reset_index() # 对分组统计结果按照订单数量降序排列 group_sorted = group.sort_values('id', ascending=False).reset_index() # 获取数据集的行数 data_nums = data.shape[0] # 删除group_sorted中的index列,并输出前几行数据 del group_sorted['index'] group_sorted.head() ``` 其中,`pd.read_csv()`可以读取csv文件,`groupby()`可以对DataFrame对象按照指定列进行分组,`count()`可以统计每组的数量,`reset_index()`可以重置索引。`sort_values()`可以按照指定列进行排序,`ascending=False`表示降序排列,`del`可以删除DataFrame对象的指定列。

相关推荐

代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)

key = pd.PeriodIndex(data['DATA_DATE'], freq='m') month = data.groupby(by=['CONS_NO', key]) # 按月进行分组 month_sum = month.sum() # 求和的比值 s_e_1, t_f_1 = date_filter(month_sum) s_e_sum = s_e_1.groupby('CONS_NO').sum() t_f_sum = t_f_1.groupby('CONS_NO').sum() se_tf_sum_ratio = date_merge(s_e_sum, t_f_sum, 'sum_ratio') print("每个用户七八月电量和与三四月电量和的比值:\n", se_tf_sum_ratio) month_max = month.max() # 求最大值的比值 s_e_2, t_f_2 = date_filter(month_max) s_e_max = s_e_2.groupby('CONS_NO').max().loc[:, 'KWH'] t_f_max = t_f_2.groupby('CONS_NO').max().loc[:, 'KWH'] se_tf_max_ratio = date_merge(s_e_max, t_f_max, 'max_ratio') print("每个用户七八月电量最大值与三四月电量最大值的比值:\n", se_tf_max_ratio) month_min = month.min() # 求最小值的比值 s_e_3, t_f_3 = date_filter(month_min) s_e_min = s_e_3.groupby('CONS_NO').min().loc[:, 'KWH'] t_f_min = t_f_3.groupby('CONS_NO').min().loc[:, 'KWH'] se_tf_min_ratio = date_merge(s_e_min, t_f_min, 'min_ratio') print("每个用户七八月电量最小值与三四月电量最小值的比值:\n", se_tf_min_ratio) month_mean_sum = month.sum() # 求平均值的比值 s_e_4, t_f_4 = date_filter(month_mean_sum) s_e_mean = s_e_4.groupby('CONS_NO').apply(lambda x: x.sum() / 122) # 先计算每个用户七八月份总的用电量,然后除以总天数,得到平均值 t_f_mean = t_f_4.groupby('CONS_NO').apply(lambda x: x.sum() / 122) # 同上 se_tf_mean_ratio = date_merge(s_e_mean, t_f_mean, 'mean_ratio') print("每个用户七八月电量平均值与三四月电量平均值的比值:\n", se_tf_mean_ratio)优化这段代码

#coding:utf8 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np sns.set_style('darkgrid') import matplotlib.font_manager as fm myfont=fm.FontProperties(fname=r'./data/simhei.ttf') #请完善下面的函数 def push_week(new_data): ############ Begin ############ new_data=new_data[new_data['type']==4].copy() #选取样本 new_data['weekdays'] = pd.to_datetime(new_data['time']).apply(lambda x: x.weekday()+1) #时间转化 week_days = new_data.groupby('weekdays')['user_id'].count() #统计购买次数 fig=plt.figure(figsize=(8,6)) #设置大小 bar_width = 0.33 # 设置宽度 plt.bar(week_days.index.values , week_days.values, bar_width, label='下单的次数') plt.xlabel('时间',fontproperties=myfont,fontsize=9) plt.ylabel('数量',fontproperties=myfont,fontsize=9) plt.title('一周内每天的下单情况',fontproperties=myfont,fontsize=12) plt.xticks(week_days.index.values, ('周一', '周二', '周三', '周四', '周五', '周六', '周日'),fontproperties=myfont,fontsize=9) plt.ylim(0,300) plt.legend(prop=myfont) ############ End ############ plt.savefig('./task2/task2_week.png') plt.close(fig) def push_date(new_data): new_data = new_data[(new_data['type'] == 4) & (pd.to_datetime(new_data['time']) < pd.to_datetime('2016-03-01'))].copy() #选出2016年数据 new_data['days'] = [x.day for x in pd.to_datetime(new_data['time'])] #选出天数 renew=new_data.groupby('days')['sku_id'].count() fig = plt.figure(figsize=(8, 6)) plt.plot(renew.index.values,renew.values,label='购买次数') plt.xlabel('天数',fontproperties=myfont,fontsize=9) plt.ylabel('次数',fontproperties=myfont,fontsize=9) plt.title('购买量和月内日期的关系',fontproperties=myfont,fontsize=12) plt.legend(prop=myfont) ############ End ############ plt.savefig('./task2/task2_date.png') plt.close(fig) 报错src/task2_test.py:22: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead. data['weekdays'] = pd.to_datetime(data['time']).apply(pd.datetime.weekday) + 1 购买意愿与星期之间的关系图完成! 购买意愿与日期之间的关系图完成!

start_time = time.time() othercon = 'Profile_Time >= "{}" and Profile_Time <"{}" and high_level > 338'.format(desday,tom_dt.strftime('%Y-%m-%d')) # apro_df 是[latitude,longitude,time,high_level,features]的格式,但是高度还没有std apro_ori, apro_df, apro_xr = get_apro_data_sql(con, apro_config, othercon, pos_merge=pos_df, multi_index=multi_index + ['high_level']) print('THE COST to get raw data table:',time.strftime("%H: %M: %S",time.gmtime(time.time() - start_time))) # TODO: 可能查不到数据,判断一下 if apro_df.shape[0] == 0: # 修改列名即可 apro_final_df = apro_df apro_final_df.rename(columns={'high_level':'Level'},inplace=True) print('THE {} DAY HAS NO APRO DATA'.format(desday)) else: # 高度标准化 apro_df['Level'] = apro_df.apply(apro_get_level, axis=1) apro_df = apro_df.drop(['high_level'], axis=1) apro_xr = apro_df.set_index(['Time', 'Latitude', 'Longitude', 'Level']).to_xarray() # 插值等 # 2. 插值 _, _, times, tlabels = get_apro_interp_attr(apro_xr, std_index_3d, desday,posrange) # 时间 apro_mean_xr = apro_xr.groupby_bins('Time', bins=times, labels=tlabels).mean('Time').rename( {'Time_bins': 'Time'}) # 位置 apro_mean_xr['Latitude'] = apro_mean_xr.Latitude.values.round(1) apro_mean_xr['Longitude'] = apro_mean_xr.Longitude.values.round(1) apro_mean_df = apro_mean_xr.to_dataframe().dropna(how='all').reset_index() # 最后 apro_final_df = apro_mean_df.groupby(['Time', 'Latitude', 'Longitude', 'Level']).mean().dropna(how='all') # apro_final_xr = apro_final_df.to_xarray() apro_final_df = apro_final_df.reset_index() # 修改时间 apro_final_df.Time = pd.to_datetime(apro_final_df['Time']) apro_final_df.Time = apro_final_df['Time'].apply(lambda x:x.replace(year=2023)) # Todo: 可以改成输入的年份 # 输出中间文件,可能是空文件 desday = desday.replace('2017','2023') outfile = os.path.join(apro_config.outpath,"apro_mid_{}.csv".format(desday)) apro_final_df.to_csv(outfile,index=False)

import tkinter as tk import pandas as pd from tkinter import messagebox # 读取Excel表格数据 df = pd.read_excel(r'C:\Users\bing3_chen\Desktop\1.xlsx', sheet_name='總表') # 创建GUI窗口 window = tk.Tk() window.title('物料进出库管理') window.geometry('400x200') # 进货函数 def add_inventory(): # 获取物料名称和数量 name = name_entry.get() quantity = int(quantity_entry.get()) # 查找相同名称的数据并进行加操作 group = df.groupby('名稱').sum() if name in group.index: group.loc[name, '數量'] += quantity else: group.loc[name] = [quantity] group.reset_index(inplace=True) # 将修改后的数据写回Excel表格 group.to_excel(r'C:\Users\bing3_chen\Desktop\1.xlsx', index=False, sheet_name='總表', mode='a', header=False) # 清空文本框 name_entry.delete(0, tk.END) quantity_entry.delete(0, tk.END) # 出货函数 def remove_inventory(): # 获取物料名称和数量 name = name_entry.get() quantity = int(quantity_entry.get()) # 查找相同名称的数据并进行减操作 group = df.groupby('名稱').sum() if name in group.index and group.loc[name, '數量'] >= quantity: group.loc[name, '數量'] -= quantity else: messagebox.showerror('Error', '物料不足!') return group.reset_index(inplace=True) # 将修改后的数据写回Excel表格 group.to_excel(r'C:\Users\bing3_chen\Desktop\1.xlsx', index=False, sheet_name='總表', mode='a', header=False) # 清空文本框 name_entry.delete(0, tk.END) quantity_entry.delete(0, tk.END) # 添加控件 tk.Label(window, text='物料名称:').grid(row=0, column=0) name_entry = tk.Entry(window) name_entry.grid(row=0, column=1) tk.Label(window, text='物料数量:').grid(row=1, column=0) quantity_entry = tk.Entry(window) quantity_entry.grid(row=1, column=1) tk.Button(window, text='进货', command=add_inventory).grid(row=2, column=0) tk.Button(window, text='出货', command=remove_inventory).grid(row=2, column=1) window.mainloop()將這個代碼中pabds庫可以修改成openpyxl庫嗎

最新推荐

recommend-type

地县级城市建设2022-2002 -市级预算资金-国有土地使用权出让收入 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

银行家算法:守护系统安全稳定的关键技术.pdf

在多道程序环境中,进程间的资源争夺可能导致死锁现象的发生,从而影响系统的正常运行。银行家算法是一种基于资源分配和请求的算法,用于避免死锁的发生。通过模拟银行家的贷款操作,该算法确保系统在任何时候都不会进入不安全状态,从而避免死lock的发生。 二、银行家算法的基本概念 系统状态:系统状态包括当前可用的资源数量、每个进程所拥有的资源数量以及每个进程所申请的资源数量。 安全状态:如果存在一个进程序列,使得按照该序列执行每个进程的资源请求都不会导致死锁,那么系统处于安全状态。 不安全状态:如果不存在这样的进程序列,那么系统处于不安全状态,死锁可能会发生。
recommend-type

一款易语言写的XP模拟器

一款易语言写的XP模拟器
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串为空判断的常见问题解答:解决常见疑惑

![字符串为空判断](https://img-blog.csdnimg.cn/20210620130654176.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl8zOTQ0NTExNg==,size_16,color_FFFFFF,t_70) # 1. Python字符串为空判断的必要性 在Python编程中,字符串为空判断是至关重要的,它可以帮助我们处理各种场景,例如: - 数据验证:确保用户输入或从数据库获取的