STM32F103C8T6采用分压方式测量不同电阻的阻值并将阻值通过串口显示

时间: 2024-04-09 22:31:02 浏览: 74
您可以使用STM32F103C8T6的模拟输入引脚来采集不同电阻的阻值,并通过串口将阻值显示出来。以下是一种可能的实现方法: 1. 首先,将电阻连接到STM32F103C8T6的模拟输入引脚和地(GND)之间。您可以使用一个电压分压器电路来将电阻的阻值转换为与STM32的工作电压范围匹配的电压。 2. 在STM32的代码中,配置并初始化ADC(模拟数字转换器)模块。您可以使用CubeMX(STM32CubeMX)来生成初始化代码,以便更轻松地配置ADC。 3. 在代码中,使用ADC来采集模拟输入引脚的电压值。您可以选择将ADC设置为单通道模式,以一个引脚为输入通道。 4. 计算ADC转换结果对应的电压值。根据ADC的精度和参考电压(可能是VDD或外部引用电压)来计算电压值。 5. 将电压值转换为电阻值。由于您使用了电压分压器电路,可以使用分压器公式来计算电阻值。 6. 将电阻值通过串口发送出来。您可以使用串口库函数来实现串口通信,并将电阻值以字符串或二进制数据的形式发送出去。 请注意,以上步骤仅为参考,具体的实现方式可能会根据您的具体需求和硬件连接方式而有所不同。建议您参考STM32F103C8T6的数据手册和开发工具的使用指南,以获取更详细的信息和具体的代码示例。
相关问题

stm32f103c8t6利用adc测量电阻阻值

下面是一个基于STM32F103C8T6的ADC量电阻阻值的示例程序: ``` #include "stm32f10x.h" #define ADC1_DR_Address ((u32)0x4001244C) // ADC1数据寄存器地址 void ADC_Configuration(void); u16 ADC_GetValue(void); void Delay(__IO uint32_t nCount); int main(void) { u16 adcValue; float voltage; float resistance; ADC_Configuration(); while (1) { adcValue = ADC_GetValue(); // 假设使用3.3V的参考电压 voltage = (float)adcValue * 3.3 / 4095.0; // 假设使用一个已知的电阻作为参考电阻,根据分压原理计算未知电阻的阻值 float referenceResistance = 1000.0; // 单位:欧姆 resistance = referenceResistance * (3.3 - voltage) / voltage; // 在这里可以将阻值通过串口或其他方式进行输出显示 Delay(1000000); // 延时一段时间再进行下一次测量 } } void ADC_Configuration(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; // 使能GPIOA和ADC1的时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1, ENABLE); // 设置ADC的GPIO引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 使用PA0作为ADC的输入引脚 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); // ADC配置 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); // 配置ADC的通道 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5); // 使能ADC ADC_Cmd(ADC1, ENABLE); // 开启ADC的校准 ADC_ResetCalibration(ADC1); while (ADC_GetResetCalibrationStatus(ADC1)); ADC_StartCalibration(ADC1); while (ADC_GetCalibrationStatus(ADC1)); // 启动转换 ADC_SoftwareStartConvCmd(ADC1, ENABLE); } u16 ADC_GetValue(void) { u16 adcValue; // 等待转换完成 while (!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); // 读取转换结果 adcValue = ADC_GetConversionValue(ADC1); return adcValue; } void Delay(__IO uint32_t nCount) { for (; nCount != 0; nCount--); } ``` 这个示例程序使用PA0作为ADC的输入引脚,以3.3V为参考电压进行电阻测量。其中假设使用一个已知电阻作为参考电阻,根据分压原理计算出未知电阻的阻值。你可以根据实际情况修改参考电压和参考电阻的值,并将阻值通过串口或其他方式进行输出显示。

stm32f103c8t6串口工作方式

STM32F103C8T6是一款基于ARM Cortex-M3内核的微控制器,它具有丰富的外设资源,包括多个串口模块。下面是关于STM32F103C8T6串口工作方式的介绍: STM32F103C8T6支持多个串口模块,其中包括USART1、USART2、USART3等。这些串口模块可以用于与其他设备进行串行通信,如与计算机、传感器、显示器等进行数据交互。 串口通信是一种通过发送和接收连续的位序列来传输数据的通信方式。在STM32F103C8T6中,串口通信可以通过配置相应的寄存器来实现。 首先,需要配置串口的工作模式和波特率。工作模式可以选择为异步模式或同步模式,而波特率则决定了数据传输的速率。 其次,需要配置串口的数据位数、停止位数和校验位。数据位数决定了每个数据帧中的位数,常见的有8位和9位;停止位数决定了数据帧结束时发送线上的电平状态;验位用于检测数据传输过程中是否出现错误。 最后,需要配置串口的中断和DMA功能。中断可以在接收或发送完成时触发相应的中断服务程序,以便及时处理数据;DMA功能可以通过直接内存访问方式实现数据的高速传输,减轻CPU的负担。 总结一下,STM32F103C8T6串口工作方式的主要步骤包括配置工作模式和波特率、配置数据位数、停止位数和校验位,以及配置中断和DMA功能。

相关推荐

最新推荐

recommend-type

STM32F103C8T6开发板+GY521制作Betaflight飞控板详细图文教程

STM32F103C8T6是意法半导体公司生产的微控制器,属于STM32系列中的基础型产品,采用高性能的ARM Cortex-M3 32位内核,工作频率高达72MHz,内置高速存储器(最高512KB闪存,64KB SRAM),具有丰富的外设接口,如GPIO...
recommend-type

MAX30102心率血氧传感器在STM32F103C8T6上的应用

标题中的“MAX30102心率血氧传感器在STM32F103C8T6上的应用”指的是将MAX30102这款传感器集成到基于STM32F103C8T6微控制器的系统中,用于监测心率和血氧饱和度。MAX30102是一款集成度高的光学传感器,它结合了红外和...
recommend-type

【MCU实战经验】基于STM32F103C8T6的hart总线收发器设计

本文将详细讨论基于STM32F103C8T6微控制器的HART(Highway Addressable Remote Transducer)总线调试器的设计。HART协议是一种广泛应用在工业现场的通信协议,允许智能设备与传统4-20mA模拟信号一起工作,用于仪表的...
recommend-type

启明欣欣stm32f103rct6开发板原理图

STM32F103RCT6是一款基于ARM Cortex-M3内核的微控制器,由意法半导体(STM)生产。这款芯片具有高性能、低功耗的特点,适用于各种嵌入式应用,如工业控制、消费电子和通信设备等。启明欣欣STM32F103RCT6开发板提供了...
recommend-type

stm32f103数据手册

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的32位微控制器,属于STM32系列的中密度性能线产品。这款微控制器提供了64KB或128KB的闪存以及20KB的SRAM,适用于各种嵌入式应用,如...
recommend-type

***+SQL三层架构体育赛事网站毕设源码

资源摘要信息:"***+SQL基于三层模式体育比赛网站设计毕业源码案例设计.zip" 本资源是一个完整的***与SQL Server结合的体育比赛网站设计项目,适用于计算机科学与技术专业的学生作为毕业设计使用。项目采用当前流行且稳定的三层架构模式,即表现层(UI)、业务逻辑层(BLL)和数据访问层(DAL),这种架构模式在软件工程中被广泛应用于系统设计,以实现良好的模块化、代码重用性和业务逻辑与数据访问的分离。 ***技术:***是微软公司开发的一种用于构建动态网页和网络应用程序的服务器端技术,它基于.NET Framework,能够与Visual Studio IDE无缝集成,提供了一个用于创建企业级应用的开发平台。***广泛应用于Web应用程序开发中,尤其适合大型、复杂项目的构建。 2. SQL Server数据库:SQL Server是微软公司推出的关系型数据库管理系统(RDBMS),支持大型数据库系统的存储和管理。它提供了丰富的数据库操作功能,包括数据存储、查询、事务处理和故障恢复等。在本项目中,SQL Server用于存储体育比赛的相关数据,如比赛信息、选手成绩、参赛队伍等。 3. 三层架构模式:三层架构模式是一种经典的软件架构方法,它将应用程序分成三个逻辑部分:用户界面层、业务逻辑层和数据访问层。这种分离使得每个层次具有独立的功能,便于开发、测试和维护。在本项目中,表现层负责向用户提供交互界面,业务逻辑层处理体育比赛的业务规则和逻辑,数据访问层负责与数据库进行通信,执行数据的存取操作。 4. 体育比赛网站:此网站项目专门针对体育比赛领域的需求而设计,可以为用户提供比赛信息查询、成绩更新、队伍管理等功能。网站设计注重用户体验,界面友好,操作简便,使得用户能够快速获取所需信息。 5. 毕业设计源码报告:资源中除了可运行的网站项目源码外,还包含了详尽的项目报告文档。报告文档中通常会详细说明项目设计的背景、目标、需求分析、系统设计、功能模块划分、技术实现细节以及测试用例等关键信息。这些内容对于理解项目的设计思路、实现过程和功能细节至关重要,也是进行毕业设计答辩的重要参考资料。 6. 计算机毕设和管理系统:本资源是针对计算机科学与技术专业的学生设计的,它不仅是一套完整可用的软件系统,也是学生在学习过程中接触到的一个真实案例。通过学习和分析本项目,学生能够更深入地理解软件开发的整个流程,包括需求分析、系统设计、编码实现、测试调试等环节,以及如何将理论知识应用到实际工作中。 7. 编程:该项目的核心是编程工作,涉及到的技术主要包括*** Web Forms(或MVC)用于构建网站界面,C#作为后端开发语言处理逻辑运算,以及SQL语言进行数据库的操作和维护。学习和掌握这些编程技术对于计算机专业的学生来说是基本要求,也是他们未来从事软件开发工作的基础。 资源下载后,用户需要根据项目文档中的指导进行环境配置,包括数据库的搭建、服务器的配置等,然后通过Visual Studio等开发工具加载源码,最后编译和部署网站。一旦配置正确,用户即可通过浏览器访问网站,并体验到系统的所有功能。对于计算机专业学生来说,本资源不仅提供了实践学习的机会,而且还可以作为未来工作中的参考案例。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Python与XML:终极初学者指南】:从0到1打造高效数据交换

![【Python与XML:终极初学者指南】:从0到1打造高效数据交换](https://www.askpython.com/wp-content/uploads/2020/03/xml_parsing_python-1024x577.png) # 1. Python与XML基础概念 ## 1.1 什么是Python和XML Python是一种广泛使用的高级编程语言,以其简洁明了的语法和强大的功能库支持而闻名。XML(Extensible Markup Language)是一种标记语言,用于存储和传输数据。它允许多样化的信息存储和应用程序间的交换。 ## 1.2 Python与XML的关系
recommend-type

怎么将图像转换成numpy数组

将图像转换为NumPy数组,你可以使用Python的Pillow库,它是处理图像文件非常方便的一个工具。以下是一个简单步骤: 1. 首先安装Pillow库,如果没有安装,可以用pip安装: ```bash pip install pillow ``` 2. 然后,加载图像文件,例如`image.jpg`: ```python from PIL import Image image = Image.open("image.jpg") ``` 3. 使用`numpy.array()`函数将PIL Image对象转换为NumPy数组。默认情况下,如果是
recommend-type

深入探索AzerothCore的WoTLK版本开发

资源摘要信息:"Masuit.MyBlogs"似乎是一个指向同一目录多次的重复字符串,可能是出于某种特殊目的或者是一个错误。由于给出的描述内容和标签都是一样的,我们无法从中获取具体的知识点,只能认为这可能是一个博客项目或者是某个软件项目的名称。 在IT行业中,博客(Blog)是一种在线日记形式的网站,通常用来分享个人或组织的技术见解、最新动态、教程等内容。一个博客项目可能涉及的技术点包括但不限于:网站搭建(如使用WordPress、Hexo、Hugo等平台)、内容管理系统(CMS)的使用、前端技术(HTML、CSS、JavaScript)、后端技术(如PHP、Node.js、Python等语言)、数据库(MySQL、MongoDB等)以及服务器配置(如Apache、Nginx等)。 另一方面,"azerothcore-wotlk-master"在给出的文件名称列表中,这看起来像是一个GitHub仓库的名称。AzerothCore是一个开源的魔兽世界(World of Warcraft,简称WoW)服务器端模拟程序,允许玩家在私有的服务器上体验到类似官方魔兽世界的环境。WoW TBC(The Burning Crusade)和WoW WOTLK(Wrath of the Lich King)是魔兽世界的两个扩展包。因此,"wotlk"很可能指的就是WoW WOTLK扩展包。 AzerothCore相关的知识点包含: 1. 游戏服务器端模拟:理解如何构建和维护一个游戏服务器,使其能够处理玩家的连接、游戏逻辑、数据存储等。 2. C++编程语言:AzerothCore是用C++编写的,这要求开发者具有扎实的C++编程能力。 3. 数据库管理:游戏服务器需要数据库来存储角色数据、世界状态等信息,这涉及数据库设计和优化的技能。 4. 网络编程:游戏服务器必须能够与多个客户端进行实时通信,这需要网络编程知识,包括TCP/IP协议、多线程、网络同步等。 5. Linux操作系统:AzerothCore是一个跨平台的项目,但通常服务器端程序倾向于在Linux环境下运行,因此要求有一定的Linux服务器运维能力。 6. 安全性:游戏服务器要防止作弊和攻击,需要了解相关的安全知识,如何加强系统的安全性。 7. 开源社区:参与开源项目可以培养团队协作和交流能力,了解开源许可证,参与代码提交和版本控制(如Git)的实践。 8. 游戏开发:AzerothCore作为一个游戏服务器,与游戏开发紧密相关。这可能包括游戏设计理论、游戏平衡、游戏世界构建等知识。 综上所述,给定文件的标题和标签可能指向一个博客项目,而文件名称列表中的"azerothcore-wotlk-master"则表明可能涉及到魔兽世界服务器端模拟相关的IT知识点。由于信息量有限,无法提供更详细的技术细节和背景故事。