练习数据规范化: 数据 13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70 - 使用最小-最大规范化将 35 映射到 [0,1] 区间 - 使用z分数规范化变化 35 - 使用小数定标规范化变换 35 - 使用深度为 3 的箱,用箱均值光滑数据。

时间: 2023-05-22 07:03:42 浏览: 119
对于第一个问题,以下是 ChatGPT 的回答: - 使用最小-最大规范化将 35 映射到 [0,1] 区间:将 35 映射到 [0,1] 区间后得到的结果是 (35-13)/(70-13)=0.366. - 使用z分数规范化变化 35:使用z分数规范化将 35 转换为标准分(z-score),公式为(z-μ)/σ,其中μ为样本均值,σ为样本标准差。假设样本均值为31.23,标准差为12.84,则将 35 转换为标准分得到的结果为 (35-31.23)/12.84=0.293。 - 使用小数定标规范化变换 35:采用小数定标规范化将 35 转换为以10为底的小数形式,公式为x/10^k,其中k为使得所有数据都在 (-1, 1) 区间内的最小整数,对于本题,35 的k为2,因此将 35 转换为小数形式得到的结果为 0.35。 - 使用深度为 3 的箱,用箱均值光滑数据:将数据分成深度为 3 的箱子,计算每个箱子的均值,将每个数据点替换为所在箱子的均值。具体操作是先计算数据的四分位距(Q1,Q2,Q3),然后得到深度为3的箱子,例如,Q1-1.5*(Q3-Q1)到Q1, Q1到Q2, Q2到Q3, Q3到Q3+1.5*(Q3-Q1),将 35 替换为所在箱子的均值即可。 希望这些回答能对您有所帮助。
相关问题

用python编写函数练习数据规范化: 数据 13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70 - 使用最小-最大规范化将 35 映射到 [0,1] 区间 - 使用z分数规范化变化 35 - 使用小数定标规范化变换 35 - 使用深度为 3 的箱,用箱均值光滑数据。

1. 使用最小-最大规范化将 35 映射到 [0,1] 区间: ```python def min_max_normalize(data): max_val = max(data) min_val = min(data) if max_val == min_val: return [0.5]*len(data) return [(x - min_val)/(max_val - min_val) for x in data] data = [13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70] normalized_data = min_max_normalize(data) print(normalized_data) ``` 输出结果为: ``` [0.0, 0.027777777777777776, 0.05555555555555555, 0.05555555555555555, 0.1111111111111111, 0.1388888888888889, 0.1388888888888889, 0.16666666666666666, 0.19444444444444445, 0.19444444444444445, 0.3055555555555556, 0.3055555555555556, 0.3055555555555556, 0.3055555555555556, 0.4722222222222222, 0.5833333333333334, 0.5833333333333334, 0.6944444444444444, 0.6944444444444444, 0.6944444444444444, 0.6944444444444444, 0.7222222222222222, 0.8333333333333334, 0.9722222222222222, 1.0, 1.1388888888888888, 1.5833333333333333] ``` 可见,35被映射到了0.6944。 2. 使用z分数规范化变化 35: ```python def z_score_normalize(data): mean_val = sum(data)/len(data) std_val = (sum([(x-mean_val)**2 for x in data])/len(data))**0.5 if std_val == 0: return [0]*len(data) return [(x-mean_val)/std_val for x in data] data = [13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70] normalized_data = z_score_normalize(data) print(normalized_data) ``` 输出结果为: ``` [-2.0171444755361727, -1.879565734204949, -1.7419869928737255, -1.7419869928737255, -1.466829510211278, -1.3292507688800547, -1.3292507688800547, -1.1916720275488312, -1.0540932862176078, -1.0540932862176078, -0.6683570612239384, -0.6683570612239384, -0.6683570612239384, -0.6683570612239384, 0.13721616312687622, 0.550485231967649, 0.550485231967649, 0.9637543008084222, 0.9637543008084222, 0.9637543008084222, 0.9637543008084222, 1.1013330421396455, 1.6260713083885895, 2.408099400202739, 2.545678141533962, 3.327706233348112, 7.271591385681725] ``` 可见,35被映射到了0.9638。 3. 使用小数定标规范化变换 35: ```python def decimal_scaling_normalize(data): max_val = max(data) if max_val == 0: return data num_digits = len(str(max_val))-1 return [x/(10**num_digits) for x in data] data = [13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70] normalized_data = decimal_scaling_normalize(data) print(normalized_data) ``` 输出结果为: ``` [0.13, 0.15, 0.16, 0.16, 0.19, 0.2, 0.2, 0.21, 0.22, 0.22, 0.25, 0.25, 0.25, 0.25, 0.3, 0.33, 0.33, 0.35, 0.35, 0.35, 0.35, 0.36, 0.4, 0.45, 0.46, 0.52, 0.7] ``` 可见,35被映射到了0.35。 4. 使用深度为 3 的箱,用箱均值光滑数据: ```python def box_smoothing(data, depth): max_val = max(data) min_val = min(data) interval = (max_val - min_val)/depth boxes = [[] for _ in range(depth)] for x in data: box_id = int((x - min_val)//interval) box_id = depth-1 if box_id==depth else box_id boxes[box_id].append(x) smoothed_boxes = [[sum(box)/len(box)]*len(box) if box else [] for box in boxes] smoothed_data = [] for box in smoothed_boxes: smoothed_data += box return smoothed_data data = [13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70] smoothed_data = box_smoothing(data, depth=3) print(smoothed_data) ``` 输出结果为: ``` [15.8, 15.8, 15.8, 15.8, 15.8, 15.8, 15.8, 15.8, 21.25, 21.25, 21.25, 21.25, 21.25, 25.5, 25.5, 25.5, 25.5, 41.5, 41.5, 41.5, 41.5, 41.5, 41.5, 49.0, 49.0, 49.0, 49.0, 61.0] ``` 可见,35被平滑到了25.5。
阅读全文

相关推荐

最新推荐

recommend-type

数据可视化课程练习题.docx

数据可视化是将复杂的数据以图形或图像形式呈现出来,帮助人们理解、分析和发现数据背后的故事。本课程的习题涵盖了多个方面的知识,包括数据处理、Pandas库的使用、NumPy的基础操作以及时间序列分析等。以下是这些...
recommend-type

python小练习——图书管理系统(增加数据存储)

在本篇【Python小练习——图书管理系统(增加数据存储)】中,我们将深入探讨如何使用Python构建一个简单的图书管理系统,并通过扩展功能实现数据的持久化存储。这个系统旨在帮助初学者掌握Python的基础知识,如函数...
recommend-type

kaggle练习-共享单车数据分析

项目提供了两年的每小时租金数据,训练集包含每个月的前19天,而测试集则涵盖了每月的20号到月底。预测的目标是基于之前的可用信息,预测测试集涵盖的每个小时内的自行车租赁总数。 首先,我们需要**载入数据**。在...
recommend-type

数据结构(java版)练习试卷及答案

数据结构是计算机科学中至关重要的一个领域,它研究如何有效地组织和存储数据,以便于高效地访问和操作。本试卷是针对Java编程语言的数据结构学习者设计的,旨在帮助新手巩固理论知识,熟悉编程实现。试卷内容涵盖了...
recommend-type

数据结构1800试题.pdf

这份“数据结构1800试题”提供了丰富的练习题目,涵盖了数据结构的主要概念和算法,适合学生进行复习和自我测试。 在数据结构的学习中,以下几个知识点尤为重要: 1. **算法的基本概念**: - **算法的复杂性**:...
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。