c4.5 决策树算法matlab
时间: 2023-06-28 09:15:39 浏览: 248
C4.5是一种经典的决策树算法,它可以用来解决分类和回归问题。下面是一个简单的C4.5决策树算法的Matlab实现示例:
```matlab
function tree = c45(data, labels, feat_names)
% C4.5决策树算法
% data:训练数据
% labels:类别标签
% feat_names:特征名称
% tree:生成的决策树
% 如果数据集中所有实例都属于同一类别C,将T作为单节点树并将C作为该节点的类标记,返回单节点树
if all(labels == labels(1))
tree.op = '';
tree.kids = {};
tree.class = labels(1);
tree.feat = '';
return;
end
% 如果特征集为空,将T作为单节点树并将数据集中出现最多的类别C作为该节点的类标记,返回单节点树
if isempty(feat_names)
tree.op = '';
tree.kids = {};
tree.class = mode(labels);
tree.feat = '';
return;
end
% 计算各特征的信息增益,选择信息增益最大的特征作为划分特征
num_feat = size(data, 2);
info_gain = zeros(1, num_feat);
for i = 1:num_feat
feat = data(:, i);
info_gain(i) = calc_info_gain(feat, labels);
end
[~, feat_idx] = max(info_gain);
feat_name = feat_names{feat_idx};
% 生成当前节点,将该节点的划分特征设置为信息增益最大的特征
tree.op = feat_name;
tree.kids = {};
% 对每个特征值,生成一个子节点,并将该特征值对应的实例集合作为子节点的训练集
feat = data(:, feat_idx);
feat_values = unique(feat);
for i = 1:length(feat_values)
value = feat_values(i);
idx = find(feat == value);
sub_data = data(idx, :);
sub_labels = labels(idx);
sub_feat_names = feat_names([1:feat_idx-1, feat_idx+1:end]);
% 如果子集为空,生成单节点树并将该节点的类别标记设置为当前节点中出现最多的类别标记
if isempty(sub_labels)
kid.op = '';
kid.kids = {};
kid.class = mode(labels);
kid.feat = '';
else
% 否则生成子节点
kid = c45(sub_data, sub_labels, sub_feat_names);
end
% 将子节点添加到当前节点的子节点列表中
tree.kids{end+1} = kid;
kid.feat = value;
end
end
function info_gain = calc_info_gain(feat, labels)
% 计算信息增益
% feat:特征向量
% labels:类别标签
% info_gain:信息增益
num_inst = length(labels);
feat_values = unique(feat);
num_values = length(feat_values);
entropy_total = calc_entropy(labels);
% 计算条件熵
entropy_cond = 0;
for i = 1:num_values
value = feat_values(i);
idx = find(feat == value);
sub_labels = labels(idx);
entropy_cond = entropy_cond + length(sub_labels)/num_inst * calc_entropy(sub_labels);
end
% 计算信息增益
info_gain = entropy_total - entropy_cond;
end
function entropy = calc_entropy(labels)
% 计算熵
% labels:类别标签
% entropy:熵
num_inst = length(labels);
class_values = unique(labels);
num_classes = length(class_values);
% 计算每个类别出现的概率
prob = zeros(1, num_classes);
for i = 1:num_classes
prob(i) = sum(labels == class_values(i)) / num_inst;
end
% 计算熵
entropy = -sum(prob .* log2(prob));
end
```
在上面的代码中,`c45`函数是C4.5决策树算法的主函数,`calc_info_gain`函数用于计算信息增益,`calc_entropy`函数用于计算熵。您可以根据自己的数据集和需求来修改代码,并且可以使用`treeplot`函数将生成的决策树可视化。
阅读全文