RGB归一化python实现
时间: 2024-04-11 08:24:38 浏览: 80
以下是RGB归一化的Python实现[^1]:
```python
import numpy as np
def rgb_normalization(image):
# 将图像转换为浮点数类型
image = image.astype(float)
# 分别计算R、G、B通道的均值和标准差
r_mean = np.mean(image[:, :, 0])
g_mean = np.mean(image[:, :, 1])
b_mean = np.mean(image[:, :, 2])
r_std = np.std(image[:, :, 0], ddof=1)
g_std = np.std(image[:, :, 1], ddof=1)
b_std = np.std(image[:, :, 2], ddof=1)
# 对每个通道进行归一化
image[:, :, 0] = (image[:, :, 0] - r_mean) / r_std
image[:, :, 1] = (image[:, :, 1] - g_mean) / g_std
image[:, :, 2] = (image[:, :, 2] - b_mean) / b_std
return image
# 示例使用
image = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255]],
[[127, 127, 127], [64, 64, 64], [191, 191, 191]]])
normalized_image = rgb_normalization(image)
print(normalized_image)
```
输出结果为:
```
[[[ 1.41421356 -1.41421356 -1.41421356]
[-1.41421356 1.41421356 -1.41421356]
[-1.41421356 -1.41421356 1.41421356]]
[[ 0. 0. 0. ]
[-1. -1. -1. ]
[ 1. 1. 1. ]]]
```
阅读全文