用Python写一段模拟退火算法代码,解决快递站点选址优化问题
时间: 2023-02-28 15:34:10 浏览: 115
python:模拟退火算法解决函数优化问题(最小值、最大值)
5星 · 资源好评率100%
好的,这是一段简单的模拟退火算法代码,可以解决快递站点选址优化问题:
```python
import random
import math
def acceptance_probability(old_cost, new_cost, temperature):
return math.exp((old_cost - new_cost) / temperature)
def simulated_annealing(cost_function, random_neighbor, temperature):
current_solution = random_start()
current_cost = cost_function(current_solution)
best_solution = current_solution
best_cost = current_cost
while temperature > 1e-10:
new_solution = random_neighbor(current_solution)
new_cost = cost_function(new_solution)
if acceptance_probability(current_cost, new_cost, temperature) > random.uniform(0, 1):
current_solution = new_solution
current_cost = new_cost
if current_cost < best_cost:
best_solution = current_solution
best_cost = current_cost
temperature *= 0.99
return best_solution
```
其中,`cost_function` 函数需要自己定义,代表对当前解的评估,`random_neighbor` 函数也需要自己定义,代表如何生成当前解的邻居解。
希望这段代码对你有所帮助!
阅读全文