# 初始化蚂蚁 num_ants = 50 alpha = 1 beta = 5 rho = 0.1 Q = 100 pheromones = np.ones((num_cities, num_cities)) best_path = [] best_length = np.inf 这些代码分别什么信息
时间: 2024-04-04 17:34:00 浏览: 83
这些代码是一个蚁群算法的初始化参数,用于解决旅行商问题。其中:
- `num_ants` 表示蚂蚁数量;
- `alpha` 和 `beta` 是控制信息素和启发因子在蚂蚁选择路径时的相对作用的参数;
- `rho` 是信息素挥发因子,用于控制信息素的挥发速度;
- `Q` 是常数因子,用于控制信息素增加量;
- `pheromones` 是一个二维数组,表示各个城市之间的信息素浓度;
- `best_path` 是一个列表,用于记录迄今为止找到的最优路径;
- `best_length` 是一个变量,用于记录迄今为止找到的最优路径的长度。
相关问题
import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.spatial.distance import cdist from ant_colony import solve_tsp # 读取城市数据 df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str) # 提取城市和经纬度数据 countrys = df.index.values countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist()) # 计算城市间的距离矩阵 dist_matrix = cdist(countrys_coords, countrys_coords, metric='euclidean') # 创建蚁群算法实例 num_ants = 50 num_iterations = 500 alpha = 1 beta = 2 rho = 0.5 acs = solve_tsp(dist_matrix, num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho) # 输出访问完所有城市的最短路径的距离和城市序列 best_path = acs.get_best_path() best_distance = acs.best_cost visited_cities = [countrys[i] for i in best_path] print("最短路径距离:", best_distance) print("访问城市序列:", visited_cities) # 数据可视化 fig = plt.figure(figsize=(12, 8)) map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l') map.drawcoastlines(color='gray') map.drawcountries(color='gray') x, y = map(countrys_coords[:, 0], countrys_coords[:, 1]) map.scatter(x, y, c='b', marker='o') path_coords = countrys_coords[best_path] path_x, path_y = map(path_coords[:, 0], path_coords[:, 1]) map.plot(path_x, path_y, c='r', marker='o') for i in range(len(countrys)): x, y = map(countrys_coords[i, 1], countrys_coords[i, 0]) plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center') plt.title("全球首都最短路径规划") plt.show()改成现在都有调用蚁群算法库的代码
好的,可以尝试使用蚁群算法库来计算最优路径。以下是修改后的代码:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from ant_colony import AntColonyOptimizer
# 读取城市数据
df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str)
# 提取城市和经纬度数据
countrys = df.index.values
countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist())
# 创建蚁群算法实例
num_ants = 50
num_iterations = 500
alpha = 1
beta = 2
rho = 0.5
optimizer = AntColonyOptimizer(num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho)
# 计算最短路径
best_path, best_distance = optimizer.solve(countrys_coords)
# 输出访问完所有城市的最短路径的距离和城市序列
visited_cities = [countrys[i] for i in best_path]
print("最短路径距离:", best_distance)
print("访问城市序列:", visited_cities)
# 数据可视化
fig = plt.figure(figsize=(12, 8))
map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l')
map.drawcoastlines(color='gray')
map.drawcountries(color='gray')
x, y = map(countrys_coords[:, 0], countrys_coords[:, 1])
map.scatter(x, y, c='b', marker='o')
path_coords = countrys_coords[best_path]
path_x, path_y = map(path_coords[:, 0], path_coords[:, 1])
map.plot(path_x, path_y, c='r', marker='o')
for i in range(len(countrys)):
x, y = map(countrys_coords[i, 1], countrys_coords[i, 0])
plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center')
plt.title("全球首都最短路径规划")
plt.show()
```
其中,`AntColonyOptimizer` 是一个自定义的蚁群算法优化器类,代码如下:
```python
import numpy as np
class AntColonyOptimizer:
def __init__(self, num_ants, num_iterations, alpha, beta, rho, Q=100):
self.num_ants = num_ants
self.num_iterations = num_iterations
self.alpha = alpha
self.beta = beta
self.rho = rho
self.Q = Q
def solve(self, dist_matrix):
n = dist_matrix.shape[0]
# 初始化信息素矩阵
tau = np.ones((n, n))
# 创建蚂蚁
ants = np.zeros((self.num_ants, n), dtype=int)
# 记录最优路径和距离
best_path = None
best_distance = np.inf
# 迭代搜索
for iter in range(self.num_iterations):
# 初始化蚂蚁位置
ants[:, 0] = np.random.randint(0, n, size=self.num_ants)
# 蚂蚁移动
for k in range(1, n):
# 计算可选城市的概率
probs = np.zeros((self.num_ants, n))
for i in range(self.num_ants):
curr_city = ants[i, k-1]
visited = ants[i, :k]
unvisited = np.setdiff1d(range(n), visited)
if len(unvisited) == 0:
continue
pheromone = tau[curr_city, unvisited]
distance = dist_matrix[curr_city, unvisited]
probs[i, unvisited] = pheromone ** self.alpha * (1 / distance) ** self.beta
probs[i, visited] = 0
probs[i] /= probs[i].sum()
# 选择下一个城市
ants[:, k] = [np.random.choice(range(n), p=probs[i]) for i in range(self.num_ants)]
# 计算每只蚂蚁的路径长度
path_lengths = np.zeros(self.num_ants)
for i in range(self.num_ants):
path = ants[i]
path_lengths[i] = dist_matrix[path[-1], path[0]] + dist_matrix[path[:-1], path[1:]].sum()
# 更新最优路径
if path_lengths[i] < best_distance:
best_distance = path_lengths[i]
best_path = path
# 更新信息素矩阵
delta_tau = np.zeros((n, n))
for i in range(self.num_ants):
path = ants[i]
for j in range(n-1):
curr_city = path[j]
next_city = path[j+1]
delta_tau[curr_city, next_city] += self.Q / path_lengths[i]
delta_tau[path[-1], path[0]] += self.Q / path_lengths[i]
tau = (1 - self.rho) * tau + self.rho * delta_tau
return best_path, best_distance
```
这个优化器使用了与之前相同的距离矩阵,不同的是,它将蚂蚁移动和信息素更新的过程封装在了 `solve` 方法中,返回最优路径和距离。
paths_travelled(ants_travelled) = sub2ind([num_ants, n], (1:num_ants)', ants_pos); ants_travelled = sub2ind([num_ants, n], (1:num_ants)', next_pos); paths_travelled(ants_travelled) = sub2ind([num_ants, n], (1:num_ants)', ants_pos);代码报错
这个错误可能是因为变量 `ants_pos` 和 `next_pos` 的维度不一致导致的。请确保它们都是 $num\_ants \times 1$ 的列向量。
此外,还需要确保 `ants_pos` 和 `next_pos` 中的元素在合理的范围内,即 $1 \leq ants\_pos(i) \leq n$ 和 $1 \leq next\_pos(i) \leq n$,其中 $i$ 表示向量的第 $i$ 个元素。这是因为 `sub2ind` 函数要求输入的 subscripts (即下标)必须是正整数。
最后,也需要确保 `paths_travelled` 变量已经被初始化为一个 $num\_ants \times n$ 的矩阵,且所有元素都是初始值 0。否则也会导致代码报错。
阅读全文