flink反压的原因。。。。面试被问到了,怎么回答。。

时间: 2023-09-16 14:12:31 浏览: 267
Flink反压是为了解决流式计算中数据处理过程中数据积压的问题而设计的。其原理是通过限制数据源的数据产生速率,使得数据处理的速度与数据产生速率保持相同,从而避免了数据积压的情况。 通常情况下,当数据源的数据产生速率超过了数据处理的速度时,就会出现数据积压的情况。这种情况会导致数据处理过程变慢,最终可能导致整个系统崩溃。为了避免这种情况的发生,Flink引入了反压机制,它可以使得数据源在数据产生速率过快时减缓数据产生的速度,从而避免了数据积压的情况。 在实际使用中,Flink反压机制通常与水位线(watermark)机制一起使用。水位线机制可以帮助Flink判断数据处理的进度,从而确定是否需要进行反压。如果发现数据处理速度过慢,就会启动反压机制,限制数据源的数据产生速率,直到数据处理速度与数据产生速率保持相同。 总之,Flink反压机制是为了解决流式计算中数据积压的问题而设计的,通过限制数据源的数据产生速率,避免了数据积压的情况,保证了整个系统的稳定性和可靠性。
相关问题

flink反压的原因。

Flink反压是指当输入速度超过处理速度时,Flink会自动减缓输入速度以保持稳定的处理速度。这种反压机制的原因主要有以下几点: 1. 避免数据丢失:当数据输入速度过快,而处理速度跟不上时,如果不进行反压控制,那么就可能会出现数据丢失的情况,从而导致结果不准确。 2. 保持稳定的系统性能:当输入速度超过处理速度时,如果不进行反压控制,那么就会导致系统的负载过重,从而影响系统的稳定性和性能。 3. 提高系统的可靠性:通过反压机制,可以避免系统因为输入速度过快而导致的系统崩溃或运行错误等问题,从而提高系统的可靠性和稳定性。 总之,Flink反压机制的主要目的是为了保证系统的稳定性、可靠性和准确性,避免出现过载、数据丢失等问题,从而提高系统的性能和用户体验。

flink 反压原理

Flink的反压机制是指在Flink的数据流中,当数据消费的速度跟不上数据生产的速度时,Flink会自动调整数据生产的速率,以避免数据积压的情况。具体来说,Flink会根据下游算子的处理速度来动态调节上游算子的数据生产速率,以确保整个数据流的速率匹配。 Flink的反压机制是通过基于水位线的流控来实现的。当下游算子的处理速度跟不上上游算子的数据生产速率时,下游算子会向上游算子发送水位线信号,告诉上游算子当前下游算子的处理能力。上游算子根据水位线信号来动态调整数据生产速率,以确保数据流的速率不会超过下游算子的处理能力。这种基于水位线的流控机制可以保证数据流的稳定性和高效性。 总之,Flink的反压机制可以帮助我们更好地管理数据流的速率,避免数据积压和系统崩溃等问题,提高大数据处理的效率和稳定性。
阅读全文

相关推荐

最新推荐

recommend-type

Flink +hudi+presto 流程图.docx

在Flink中,数据被抽象为持续流动的数据流,通过转换和操作,可以实时生成结果。 Hudi(Hadoop Upserts, Deletes, and Incremental Processing)则是一款面向大数据湖的存储层优化工具,主要解决数据湖中数据更新、...
recommend-type

Flink实用教程_预览版_v1.pdf

Flink 从最初的诞生到现在的广泛采用,经历了多次重大升级,特别是在阿里巴巴的收购之后,其版本迭代速度加快,API 不断更新。Flink 的主要特性包括低延迟、高吞吐量的数据处理能力,支持有限和无限数据流,以及状态...
recommend-type

大数据之flink教程-TableAPI和SQL.pdf

《大数据之Flink教程——TableAPI和SQL》 Flink作为一个强大的批流统一的数据处理框架,其Table API和SQL提供了一种统一的方式来处理批处理和流处理任务。这两种API允许开发者以声明式的方式编写查询,使得代码更加...
recommend-type

《剑指大数据——Flink学习精要(Java版)》(最终修订版).pdf

2014年,Stratosphere的代码被捐赠给Apache软件基金会,Flink就在此基础上被重新设计出来的。Flink的Logo是一只彩色的松鼠,体现了“快速、灵巧”的特点。 Flink的特点可以总结为以下几个方面: 1. 速度快:Flink...
recommend-type

基于Flink构建实时数据仓库.docx

在OPPO的实时数仓实践中,Flink被广泛应用于以下几个关键场景: 1. **实时指标计算**:通过Flink实时处理数据流,OPPO能够快速计算出业务KPI,如销售量、用户活跃度等,为决策提供及时依据。 2. **异常检测**:利用...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。