用DGCNN写一个点云配准模型,要具体的代码
时间: 2024-03-02 14:51:10 浏览: 123
好的,以下是一个使用DGCNN实现点云配准的简单示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DGCNN(nn.Module):
def __init__(self, num_points, num_features, num_transform_params):
super(DGCNN, self).__init__()
self.conv1 = nn.Conv1d(num_features, 64, 1)
self.conv2 = nn.Conv1d(64 + num_features, 128, 1)
self.conv3 = nn.Conv1d(128 + 64, 256, 1)
self.conv4 = nn.Conv1d(256 + 128, 512, 1)
self.fc1 = nn.Linear(512 + 256, 1024)
self.fc2 = nn.Linear(1024, 512)
self.fc3 = nn.Linear(512, num_transform_params)
def forward(self, x):
batch_size = x.size(0)
num_points = x.size(1)
x = x.transpose(2, 1) # [B, C, N] -> [B, N, C]
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(torch.cat([x, x.transpose(2, 1).repeat(1, 1, num_points)], dim=1)))
x = F.relu(self.conv3(torch.cat([x, x.transpose(2, 1).repeat(1, 1, num_points)], dim=1)))
x = F.relu(self.conv4(torch.cat([x, x.transpose(2, 1).repeat(1, 1, num_points)], dim=1)))
x = F.max_pool1d(x, num_points).squeeze(-1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
x = x.view(batch_size, -1)
return x
def point_cloud_align(input_points, target_points, num_transform_params=12):
model = DGCNN(num_points=input_points.size(1), num_features=input_points.size(2), num_transform_params=num_transform_params)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
num_epochs = 10
batch_size = input_points.size(0)
for epoch in range(num_epochs):
epoch_loss = 0.0
for i in range(0, input_points.size(0), batch_size):
optimizer.zero_grad()
batch_input = input_points[i:i+batch_size]
batch_target = target_points[i:i+batch_size]
pred_params = model(batch_input)
pred_transform = pred_params.view(-1, 4, 3)
pred_points = torch.bmm(batch_input, pred_transform.transpose(2, 1))
loss = criterion(pred_points, batch_target)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
print("Epoch %d loss: %.4f" % (epoch+1, epoch_loss))
return model
```
这个代码实现了一个简单的点云配准模型,使用了DGCNN网络架构。`DGCNN`类定义了DGCNN网络中的卷积层、池化层、全连接层等,其中最后一层全连接层输出点云的变换矩阵。`point_cloud_align`函数定义了点云配准的训练过程,包括模型的定义、损失函数的定义、优化器的定义以及迭代训练过程。具体来说,每次迭代中,将输入点云和目标点云配对作为模型的输入,计算模型输出的点云变换矩阵,并将其与目标点云的真实变换矩阵进行比较,计算损失函数并进行反向传播更新模型参数。最终返回训练好的模型,用于未知数据的点云配准。
阅读全文