基于LSTM的剩余寿命预测模型的代码,要求设定一个寿命阈值,画出图形
时间: 2023-06-20 20:08:41 浏览: 116
以下是基于LSTM的剩余寿命预测模型的代码,同时对剩余寿命进行了二分类,设定了一个寿命阈值,并画出了ROC曲线和混淆矩阵。
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM
from keras.callbacks import EarlyStopping
from sklearn.metrics import confusion_matrix, roc_curve, auc
import matplotlib.pyplot as plt
# 读取数据
df = pd.read_csv('data.csv')
# 提取特征和标签
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
# 数据归一化
sc = MinMaxScaler(feature_range=(0, 1))
X = sc.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 转换为LSTM所需的格式
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(units=50, return_sequences=True))
model.add(LSTM(units=50))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 模型训练
early_stop = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100, batch_size=32, callbacks=[early_stop])
# 模型预测
y_pred = model.predict(X_test)
y_pred = (y_pred > 0.5)
# 绘制ROC曲线
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.show()
# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)
print(cm)
```
其中,`data.csv`为数据文件,包含了多个传感器采集的特征和对应的剩余寿命。
设定了一个寿命阈值,即当预测的剩余寿命小于等于该阈值时,视为设备已经故障,否则视为设备正常。在本代码中,该阈值设定为50。
绘制的ROC曲线和混淆矩阵可以帮助我们评估模型的性能。
注:本代码仅为示例代码,具体实现可能因数据不同而有所不同。
阅读全文