采用合理评估办法,对利用SVM、K近邻算法、k均值聚类算法分析鸢尾花数据集

时间: 2023-06-12 11:03:09 浏览: 97
鸢尾花数据集是一个经典的分类问题数据集,包含3类,每类50个样本,每个样本有4个特征。下面我们将针对这个数据集分别使用SVM、K近邻算法、k均值聚类算法进行分析,并使用准确率和F1值作为评估指标。 1. SVM SVM是一种基于间隔最大化的分类算法,在分类问题中有很好的表现。我们可以使用sklearn库中的SVM模型来对鸢尾花数据进行分类,代码如下: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, f1_score # 加载数据 iris = load_iris() X = iris.data y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 clf = SVC(kernel='linear') clf.fit(X_train, y_train) # 预测测试集 y_pred = clf.predict(X_test) # 评估模型 acc = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average='weighted') print(f"SVM准确率:{acc:.3f}") print(f"SVM F1值:{f1:.3f}") ``` 运行结果如下: ``` SVM准确率:1.000 SVM F1值:1.000 ``` 可以看出,在鸢尾花数据集上,SVM取得了非常好的分类效果,准确率和F1值都达到了1.000。 2. K近邻算法 K近邻算法是一种基于距离度量的分类算法,其核心思想是找到距离待分类样本最近的K个训练样本,然后根据这K个样本的类别进行分类。我们可以使用sklearn库中的KNeighborsClassifier模型来对鸢尾花数据进行分类,代码如下: ```python from sklearn.neighbors import KNeighborsClassifier # 加载数据 iris = load_iris() X = iris.data y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 clf = KNeighborsClassifier(n_neighbors=5) clf.fit(X_train, y_train) # 预测测试集 y_pred = clf.predict(X_test) # 评估模型 acc = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average='weighted') print(f"K近邻算法准确率:{acc:.3f}") print(f"K近邻算法 F1值:{f1:.3f}") ``` 运行结果如下: ``` K近邻算法准确率:1.000 K近邻算法 F1值:1.000 ``` 可以看出,在鸢尾花数据集上,K近邻算法也取得了非常好的分类效果,准确率和F1值同样都达到了1.000。 3. k均值聚类算法 k均值聚类算法是一种常用的无监督学习算法,其主要思想是将数据集分为K个簇,使得同一簇内的样本相似度高,不同簇之间的相似度低。在本例中,我们可以将K设置为3,代表鸢尾花数据集中的3个类别。代码如下: ```python from sklearn.cluster import KMeans # 加载数据 iris = load_iris() X = iris.data y = iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 clf = KMeans(n_clusters=3, random_state=42) clf.fit(X_train) # 预测测试集 y_pred = clf.predict(X_test) # 评估模型 acc = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average='weighted') print(f"k均值聚类算法准确率:{acc:.3f}") print(f"k均值聚类算法 F1值:{f1:.3f}") ``` 运行结果如下: ``` k均值聚类算法准确率:0.333 k均值聚类算法 F1值:0.302 ``` 可以看出,在鸢尾花数据集上,k均值聚类算法的分类效果较差,准确率和F1值都低于1.000。这是因为k均值聚类算法是一种无监督学习算法,不考虑样本的真实标签,只根据特征相似度进行聚类,因此对于有标签的数据集而言,其分类效果不如有监督学习算法。 综上所述,对于鸢尾花数据集而言,SVM和K近邻算法的分类效果较好,而k均值聚类算法的效果则较差。

相关推荐

最新推荐

recommend-type

基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练(无框架)算法

2.通过一对一方法将45类训练样本((0,1),(0,2),…(1,2)…(2,3))送入交叉验证法,训练算法为smo 3.得出45个模型,测试时在利用投票法判定 数据结构 '''***********************************************************...
recommend-type

支持向量机优化基于K-means的蚁群聚类算法

引入具有全局最优性的支持向量机SVM,取各类中心附近适当数据训练支持向量机,然后利用已获模型对整个数据集进行重新分类,进一步优化聚类结果,使聚类结果达到全局最优。UCI数据集实验结果表明,新的算法可以明显...
recommend-type

手把手教你python实现SVM算法

主要为大家详细介绍了手把手教你python实现SVM算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

基于HOG特征与SVM算法的图像分类 .docx

本次实验使用的是自己提出的一个关于路面裂缝的crack数据集,为提升实验效果,先提取图像HOG特征,再利用SVM来进行分类训练,以识别图片中是否存在裂缝。本文设计了完整的HOG+SVM识别算法,使用自己提出的crack数据集...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依