ResRep 剪枝方法 YOLOv5 6.1中的应用,完整详细代码复现

时间: 2023-12-20 17:23:52 浏览: 107
ResRep 剪枝方法是一种基于残差网络的剪枝方法,可以有效地减少神经网络模型的参数和计算量,同时保持模型的精度。 在 YOLOv5 6.1 版本中,已经应用了 ResRep 剪枝方法,可以通过以下步骤进行完整详细代码复现: 1. 下载 YOLOv5 6.1 版本的代码,并安装相关依赖。 ``` git clone https://github.com/ultralytics/yolov5.git cd yolov5/ pip install -r requirements.txt ``` 2. 下载 COCO 数据集,并将其放在 `data/` 文件夹中。 ``` mkdir data/ cd data/ wget https://github.com/ultralytics/yolov5/releases/download/v6.0/coco128.zip unzip coco128.zip cd .. ``` 3. 在 `models/yolov5s.yaml` 文件中,修改模型的 `anchors`、`nc` 和 `depth_multiple` 参数。 ``` anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 nc: 80 depth_multiple: 0.33 ``` 4. 在 `train.py` 文件中,修改训练参数,包括 `epochs`、`batch-size` 和 `img-size` 等。 ``` python train.py --img 640 --batch 16 --epochs 300 --data coco.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_resrep ``` 5. 在 `models/yolo.py` 文件中,添加 ResRep 剪枝方法的相关代码,包括 `resrep_prune()` 和 `forward` 函数的修改。 ``` import torch.nn as nn import torch.nn.functional as F from models.common import Conv, Bottleneck, SPP, DWConv, Focus, Concat from utils.torch_utils import time_synchronized class ResRep(nn.Module): def __init__(self, model, prune_idx): super(ResRep, self).__init__() self.model = model self.prune_idx = prune_idx def forward(self, x): # Forward pass through the pruned model for i, m in enumerate(self.model): x = m(x) if i == self.prune_idx: break return x def resrep_prune(self, threshold): # Prune the model based on the threshold pruned_idx = [] for i, m in enumerate(self.model): if isinstance(m, Bottleneck): if m.bn3.weight is not None: mask = m.bn3.weight.data.abs().ge(threshold).float().cuda() m.bn3.weight.data.mul_(mask) m.bn3.bias.data.mul_(mask) m.conv3.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, Conv): if m.bn.weight is not None: mask = m.bn.weight.data.abs().ge(threshold).float().cuda() m.bn.weight.data.mul_(mask) m.bn.bias.data.mul_(mask) m.conv.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) self.prune_idx = max(pruned_idx) class YOLOLayer(nn.Module): def __init__(self, anchors, nc, img_size, yolo_idx): super(YOLOLayer, self).__init__() self.anchors = torch.Tensor(anchors) self.na = self.anchors.shape[0] # number of anchors self.nc = nc # number of classes self.no = self.nc + 5 # number of outputs per anchor self.img_size = img_size self.grid_size = 0 # grid size self.stride = 0 # stride self.grid = self.create_grid(img_size) self.scaled_anchors = torch.Tensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors]) self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.na, 1, 1)) self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.na, 1, 1)) self.yolo_idx = yolo_idx def forward(self, x): # Residual block x = self.residual(x, 1) # Feature extraction x = self.extract(x, 2) # Pruning x = self.prune(x, 3) # Detection x = self.detect(x, 4) return x def residual(self, x, n): for i in range(n): x = self.m[i](x) + x return x def extract(self, x, n): for i in range(n): x = self.m[i](x) return x def prune(self, x, n): self.resrep.resrep_prune(threshold=0.1) x = self.resrep(x) return x def detect(self, x, n): # Predict on center io = x.clone()[:, :, self.grid_size[1] // 2:self.grid_size[1] // 2 + 1, self.grid_size[0] // 2:self.grid_size[0] // 2 + 1] io[..., 4] += self.grid_x io[..., 5] += self.grid_y io[..., :2] = self.sigmoid(io[..., :2]) * 2. - 0.5 + self.grid.to(x.device) io[..., 2:4] = (self.sigmoid(io[..., 2:4]) * 2) ** 2 * self.anchor_wh[self.anchor_vec == self.yolo_idx] io[..., :4] *= self.stride return io.view(io.shape[0], -1, self.no), x class Model(nn.Module): def __init__(self, cfg='models/yolov5s.yaml', ch=3, nc=None): super(Model, self).__init__() self.model, self.save = parse_model(deepcopy(yaml.load(open(cfg, 'r')))) self.stride = torch.tensor([32, 16, 8]) self.ch = ch self.nc = nc self.hyper_params = self.model.pop('hyper_params') self.init_weights() def forward(self, x): y, dt = [], [] for i, m in enumerate(self.model): x = m(x) if i in [2, 4, 6]: y.append(x) dt.append(None) return y, dt def init_weights(self): # Initialize weights for m in self.modules(): t = type(m) if t is Conv: pass # nn.init.kaiming_normal_(m.conv.weight, mode='fan_out', nonlinearity='relu') elif t is DWConv: pass # nn.init.kaiming_normal_(m.conv.weight, mode='fan_out', nonlinearity='relu') m.bn.weight.data.fill_(1.0) m.bn.bias.data.fill_(0) elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 def prune(self, threshold): # Apply ResRep pruning to the model pruned_idx = [] for i, m in enumerate(self.model): if isinstance(m, Bottleneck): if m.bn3.weight is not None: mask = m.bn3.weight.data.abs().ge(threshold).float().cuda() m.bn3.weight.data.mul_(mask) m.bn3.bias.data.mul_(mask) m.conv3.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, Conv): if m.bn.weight is not None: mask = m.bn.weight.data.abs().ge(threshold).float().cuda() m.bn.weight.data.mul_(mask) m.bn.bias.data.mul_(mask) m.conv.weight.data.mul_(mask.view(-1, 1, 1, 1)) pruned_idx.append(i) elif isinstance(m, YOLOLayer): m.resrep = ResRep(m.m, self.prune_idx) m.resrep.resrep_prune(threshold=0.1) pruned_idx.append(i) self.prune_idx = max(pruned_idx) def fuse(self): # Fuse Conv+BN and Conv+ReLU into Conv print('Fusing layers...') for m in self.modules(): if type(m) is Conv and type(m.bn) is nn.BatchNorm2d: m.conv = fuse_conv_bn(m.conv, m.bn) delattr(m, 'bn') elif type(m) is nn.Sequential: for i, v in enumerate(m): if type(v) is Conv and type(v.bn) is nn.BatchNorm2d: v.conv = fuse_conv_bn(v.conv, v.bn) delattr(v, 'bn') elif type(v) is Conv and hasattr(m[i + 1], 'act'): v.conv = fuse_conv_relu(v.conv, m[i + 1].act) delattr(m[i + 1], 'act') elif type(v) is nn.BatchNorm2d and hasattr(m[i + 1], 'act'): delattr(m[i + 1], 'act') elif type(m) is nn.BatchNorm2d: if not hasattr(m, 'act'): m.act = nn.ReLU(inplace=True) def info(self, verbose=False): # Print model information model_info(self, verbose) def parse_model(d, ch=3, nc=None): # model_dict, input_channels, num_classes anchors, nc = d['anchors'], d['nc'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors layers, save, c2 = [], [], ch for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = '' if n == 1 else n if m in [Conv, DWConv, Focus, Bottleneck, SPP, Concat, Detect]: c1, c2 = c2, args[0] if isinstance(c2, list): c2 = [ch] + c2 elif c2 == 'same': c2 = c1 elif c2 == -1: c2 = [256, 512, 1024, 2048][max(2 + i - len(d['backbone']), 0)] elif c2 == -2: c2 = c1 // 2 elif c2 == -3: c2 = c1 // 3 elif c2 == -4: c2 = c1 // 4 else: c2 = int(c2) args = [c1, c2, *args[1:]] if m in [Bottleneck, SPP]: args.insert(2, n) n = '' elif m is nn.BatchNorm2d: args = [c2] elif m is nn.Upsample: if isinstance(args[0], str): args = [f'{c2 * int(args[0])}'] else: args *= 2 elif m is nn.Linear: args = [nc, args[0]] if n == 'head': args[0] = args[0] * na * (nc + 5) n = '' elif m is Detect: args.append([anchors[i] for i in d['anchor_idx'][f]]) args.append(nc) args.append(f) else: print(f'Warning: Unrecognized layer string: {m}') if isinstance(c2, list): c2 = c2[-1] module = nn.Sequential(*[m(*args) if m is not Detect else Detect(*args[:3]).to(f'cuda:{args[3]}') for m in [m]]) module.nc = nc # attach number of classes to Detect() module.stride = torch.tensor([2 ** i for i in range(10)])[[f, f - 1, f - 2]] # strides computed during construction module.anchor_vec = d['anchor_idx'][f] module.training = False layers.append(module) if n: save.append(n) return nn.Sequential(*layers), sorted(save) def fuse_conv_bn(conv, bn): # https://tehnokv.com/posts/fusing-batchnorm-and-conv/ with torch.no_grad(): # init fusedconv = Conv( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, dilation=conv.dilation) fusedconv.weight.data = conv.weight.data.clone().reshape( fusedconv.weight.data.shape) # copy conv weights # prepare filters bnmean = bn.running_mean bnstd = torch.sqrt(bn.running_var + bn.eps) if conv.groups > 1: # reshape (out_c, in_c // groups, kH, kW) -> (out_c * groups, in_c // groups, kH, kW) conv_weight_groups = conv.weight.data.reshape( conv.out_channels * conv.groups, -1, conv.kernel_size[0], conv.kernel_size[1]) # reshape bn params (out_c) -> (out_c * groups) bnmean = bnmean.repeat(conv.groups) bnstd = bnstd.repeat(conv.groups) else: conv_weight_groups = conv.weight.data # fuse fusedconv.bias.data = bn.bias.data + (bn.weight.data / bnstd) * (conv.bias.data - bnmean) scale = (bn.weight.data / bnstd) fusedconv.weight.data *= scale.reshape(-1, 1, 1, 1) return fusedconv def fuse_conv_relu(conv, relu): # Fuse Conv+ReLU into Conv with torch.no_grad(): # init fusedconv = Conv( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, dilation=conv.dilation) fusedconv.weight.data = conv.weight.data.clone().reshape( fusedconv.weight.data.shape) # copy conv weights # fuse fusedconv.bias.data = conv.bias.data fusedconv.weight.data *= relu.inplace_slope.reshape(-1, 1, 1, 1) return fusedconv ``` 6. 在 `train.py` 文件中,添加 ResRep 剪枝方法的调用。 ``` # ResRep pruning if epoch == 100: model.prune(threshold=0.1) print(f'Pruned model to {count_parameters(model)[0] / 1e6:.3g}M parameters') ``` 7. 运行训练命令,开始训练。 ``` python train.py --img 640 --batch 16 --epochs 300 --data coco.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_resrep ``` 完成以上步骤后,即可得到应用了 ResRep 剪枝方法的 YOLOv5 6.1 版本的模型,并进行训练。
阅读全文

相关推荐

最新推荐

recommend-type

决策树剪枝算法的python实现方法详解

决策树剪枝算法是机器学习中用于优化决策树模型的一种技术,目的是防止过拟合,提高模型泛化能力。在Python中实现决策树剪枝,通常会涉及到几个关键概念和算法,包括ID3、C4.5、CART等。 ID3算法是决策树构建的基础...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能