yolov5的苹果叶片病害检测代码
时间: 2023-07-11 13:04:51 浏览: 160
以下是使用YOLOv5进行苹果叶片病害检测的代码:
首先,需要安装YOLOv5和相关依赖项。可以通过以下命令来安装:
```
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt
```
接下来,下载训练好的模型权重文件,可以在YOLOv5的Github页面中下载。将其放在`yolov5/weights`目录下。
然后,创建一个Python文件,并导入所需的库:
```
import torch
import cv2
import numpy as np
from PIL import Image
from pathlib import Path
from argparse import ArgumentParser
from models.experimental import attempt_load
from utils.general import check_img_size, non_max_suppression, scale_coords
from utils.torch_utils import select_device, time_synchronized
```
定义一些函数,包括加载模型、预处理图像、后处理检测结果等:
```
def load_model(weights):
# 加载模型
model = attempt_load(weights, map_location=torch.device('cpu'))
return model
def preprocess(img, img_size=640):
# 预处理图像
img0 = img.copy()
img = cv2.resize(img, (img_size, img_size))
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
return img0, img
def postprocess(outputs, img0, conf_thres=0.3, iou_thres=0.45):
# 后处理检测结果
results = []
for output in outputs:
output = non_max_suppression(output, conf_thres, iou_thres)
for det in output:
if det is not None and len(det):
det[:, :4] = scale_coords(img0.shape[1:], det[:, :4], img0.shape[:2]).round()
for *xyxy, conf, cls in reversed(det):
results.append((xyxy, cls, conf))
return results
```
最后,编写主函数,加载模型、读取图像、进行预处理和后处理,并将检测结果可视化输出:
```
def main(weights, img_path):
# 加载模型
model = load_model(weights)
# 选择设备
device = select_device('')
# 读取图像
img0 = cv2.imread(img_path)
# 预处理图像
img_size = check_img_size(640, s=model.stride.max())
img, img0 = preprocess(img0, img_size)
# 将图像转换为PyTorch张量
img = torch.from_numpy(img).to(device)
img = img.float() / 255.0
# 执行推理
model.eval()
with torch.no_grad():
outputs = model(img, augment=False)
# 后处理检测结果
results = postprocess(outputs, img0)
# 可视化输出
for result in results:
xyxy, cls, conf = result
x1, y1, x2, y2 = map(int, xyxy)
label = f'class {cls} {conf:.2f}'
cv2.rectangle(img0, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(img0, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.imshow('result', img0)
cv2.waitKey(0)
```
将`weights`设置为模型权重文件的路径,将`img_path`设置为要检测的图像的路径,然后运行主函数即可对图像进行苹果叶片病害检测。
阅读全文