$ catkin_create_pkg <package_name> roscpp sensor_msgs
时间: 2023-06-25 10:01:48 浏览: 213
这是一个在ROS中创建新的ROS包的命令,其中<package_name>是你要创建的包的名称。这个包将包含使用roscpp和sensor_msgs库所需的所有文件和依赖项。你可以在终端中输入以下命令来创建一个名为“my_package”的ROS包:
```
catkin_create_pkg my_package roscpp sensor_msgs
```
执行该命令后,将在当前目录下创建一个名为“my_package”的文件夹,其中包含CMakeLists.txt和package.xml等文件,并已经将所需的依赖项添加到package.xml文件中。
相关问题
apriltag_ros python
Apriltag is a popular library for detecting and identifying visual fiducial markers called tags. The `apriltag_ros` package is a ROS wrapper for the Apriltag library, allowing you to use Apriltag functionalities within a ROS environment. It provides ROS nodes that can subscribe to image topics, detect Apriltags in the images, and publish the detected tag poses.
To use `apriltag_ros` in Python, you can follow these steps:
1. Install the `apriltag_ros` package:
```bash
sudo apt-get install ros-<distro>-apriltag-ros
```
Replace `<distro>` with your ROS distribution (e.g., melodic, noetic).
2. Create a ROS package (if you haven't already) where you'll write your Python code:
```bash
cd ~/catkin_ws/src
catkin_create_pkg my_apriltag_pkg rospy apriltag_ros
```
Replace `my_apriltag_pkg` with your desired package name.
3. In your Python script, import the necessary modules:
```python
#!/usr/bin/env python
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
from apriltag_ros.msg import AprilTagDetectionArray
```
4. Initialize the ROS node and create a subscriber to the image topic:
```python
rospy.init_node('apriltag_detector')
bridge = CvBridge()
def image_callback(msg):
cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
# Perform Apriltag detection using cv_image
image_sub = rospy.Subscriber('/camera/image_raw', Image, image_callback)
```
Replace `/camera/image_raw` with the appropriate image topic for your setup.
5. Process the received image in the callback function and publish the detected tag poses:
```python
def image_callback(msg):
cv_image = bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
# Perform Apriltag detection using cv_image
# Publish the detected tag poses
detection_array = AprilTagDetectionArray()
# Populate detection_array with detected tag poses
pub = rospy.Publisher('/apriltag/detections', AprilTagDetectionArray, queue_size=10)
pub.publish(detection_array)
```
Replace `/apriltag/detections` with the desired topic to publish the detected tag poses.
6. Finally, run your ROS node:
```bash
rosrun my_apriltag_pkg my_apriltag_node.py
```
Remember to replace `my_apriltag_pkg` and `my_apriltag_node.py` with your actual package and node names.
This is a basic example to get you started with `apriltag_ros` in Python. You can find more information about the package and its functionalities in the official ROS documentation and the `apriltag_ros` GitHub repository.
yolov5_best.cfg这个模型文件怎么通过ros话题部署到EPRobot小车上
要将yolov5_best.cfg模型文件通过ROS话题部署到EPRobot小车上,可以按照以下步骤进行:
1. **环境配置**:
- 确保你的开发环境中安装了ROS和YOLOv5所需的依赖项。
- 安装必要的Python库,例如`torch`、`cv2`等。
2. **创建ROS包**:
- 在你的工作空间中创建一个新的ROS包,例如`yolov5_ros`。
```bash
cd ~/catkin_ws/src
catkin_create_pkg yolov5_ros rospy std_msgs sensor_msgs cv_bridge
```
3. **编写发布节点**:
- 在`yolov5_ros`包中创建一个Python脚本,例如`yolov5_node.py`。
- 该脚本将加载YOLOv5模型,并订阅摄像头图像话题,发布检测结果话题。
```python
#!/usr/bin/env python
import rospy
import torch
from std_msgs.msg import String
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
class YOLOv5Node:
def __init__(self):
rospy.init_node('yolov5_node', anonymous=True)
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.image_callback)
self.detection_pub = rospy.Publisher('/yolov5/detections', String, queue_size=10)
self.model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5_best.pt')
def image_callback(self, data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, desired_encoding='bgr8')
except CvBridgeError as e:
rospy.logerr(e)
return
results = self.model(cv_image)
detections = results.pandas().xyxy[0].to_json(orient="records")
self.detection_pub.publish(detections)
def run(self):
rospy.spin()
if __name__ == '__main__':
try:
yolo_node = YOLOv5Node()
yolo_node.run()
except rospy.ROSInterruptException:
pass
```
4. **配置ROS节点**:
- 在`CMakeLists.txt`中添加对`cv_bridge`的依赖。
- 在`package.xml`中添加对`cv_bridge`的依赖。
5. **编译工作空间**:
```bash
cd ~/catkin_ws
catkin_make
source devel/setup.bash
```
6. **运行节点**:
```bash
rosrun yolov5_ros yolov5_node.py
```
7. **发布和订阅话题**:
- 确保摄像头图像话题`/camera/image_raw`已经发布。
- 检测结果将发布到`/yolov5/detections`话题。
通过以上步骤,你可以将YOLOv5模型部署到EPRobot小车上,并通过ROS话题进行检测结果的发布和订阅。
阅读全文
相关推荐









