异构图GCN实现代码
时间: 2023-08-05 20:13:41 浏览: 163
下面是异构图GCN的PyTorch实现代码,其中包括了节点嵌入、异构邻居采样、GCN层等部分:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch.conv import SAGEConv
class HeteroGCN(nn.Module):
def __init__(self, in_feats, hidden_size, out_feats, num_layers, hetero_graph, agg_mode='mean'):
super(HeteroGCN, self).__init__()
self.in_feats = in_feats
self.hidden_size = hidden_size
self.out_feats = out_feats
self.num_layers = num_layers
self.hetero_graph = hetero_graph
self.agg_mode = agg_mode
# 节点嵌入层
self.embed_layers = nn.ModuleDict({
ntype: nn.Linear(in_feats, hidden_size) for ntype in hetero_graph.ntypes
})
# GCN层
self.layers = nn.ModuleList([
SAGEConv(hidden_size, hidden_size, agg_mode)
for _ in range(num_layers - 1)
])
self.layers.append(SAGEConv(hidden_size, out_feats, agg_mode))
def forward(self, blocks, x):
h = {ntype: self.embed_layers[ntype](x[ntype]) for ntype in self.hetero_graph.ntypes}
for i, layer in enumerate(self.layers):
# 异构邻居采样
h_dst = {etype: h[ntype] for ntype, etype, _ in self.hetero_graph.canonical_etypes}
h = layer(blocks[i], h_dst)
if i != self.num_layers - 1:
h = {ntype: F.relu(h[ntype]) for ntype in self.hetero_graph.ntypes}
return h
```
其中,`in_feats`表示输入特征的维度,`hidden_size`表示GCN层的隐藏层大小,`out_feats`表示输出特征的维度,`num_layers`表示GCN层数。`hetero_graph`是一个DGL异构图对象,`agg_mode`表示邻居聚合方式。在`__init__`方法中,我们首先定义了节点嵌入层和GCN层,然后在`forward`方法中进行了异构邻居采样和GCN的前向传播操作。
阅读全文