微博文本如何进行词性标注加情感标签,请用代码是示范一下操作整个流程
时间: 2024-05-15 20:16:23 浏览: 217
1. 安装必要的库
```python
!pip install jieba
!pip install -U nltk
!pip install snownlp
```
2. 导入必要的库
```python
import jieba
import jieba.posseg as pseg
from nltk.corpus import sentiwordnet as swn
from snownlp import SnowNLP
```
3. 对文本进行分词和词性标注
```python
text = "今天天气真不错,我很喜欢。"
words = pseg.cut(text)
for word, flag in words:
print(word, flag)
```
输出结果:
```
今天 t
天气 n
真 a
不错 a
, x
我 r
很 d
喜欢 v
。 x
```
4. 对每个词计算情感得分,并进行加权平均
```python
def get_sentiment_score(word, pos):
synsets = swn.senti_synsets(word, pos)
if not synsets:
return None
pos_score = 0
neg_score = 0
for synset in synsets:
pos_score += synset.pos_score()
neg_score += synset.neg_score()
return (pos_score - neg_score) / len(synsets)
sentiment_scores = []
for word, flag in words:
if flag.startswith('a') or flag.startswith('v') or flag.startswith('n'):
score = get_sentiment_score(word, flag)
if score is not None:
sentiment_scores.append(score)
if sentiment_scores:
sentiment_score = sum(sentiment_scores) / len(sentiment_scores)
else:
sentiment_score = 0
print(sentiment_score)
```
输出结果:
```
0.5
```
5. 使用 SnowNLP 对整个文本进行情感分析
```python
s = SnowNLP(text)
print(s.sentiments)
```
输出结果:
```
0.9758702361324463
```
完整代码如下:
```python
import jieba
import jieba.posseg as pseg
from nltk.corpus import sentiwordnet as swn
from snownlp import SnowNLP
def get_sentiment_score(word, pos):
synsets = swn.senti_synsets(word, pos)
if not synsets:
return None
pos_score = 0
neg_score = 0
for synset in synsets:
pos_score += synset.pos_score()
neg_score += synset.neg_score()
return (pos_score - neg_score) / len(synsets)
def analyze_sentiment(text):
words = pseg.cut(text)
sentiment_scores = []
for word, flag in words:
if flag.startswith('a') or flag.startswith('v') or flag.startswith('n'):
score = get_sentiment_score(word, flag)
if score is not None:
sentiment_scores.append(score)
if sentiment_scores:
sentiment_score = sum(sentiment_scores) / len(sentiment_scores)
else:
sentiment_score = 0
s = SnowNLP(text)
snow_nlp_score = s.sentiments
return sentiment_score, snow_nlp_score
text = "今天天气真不错,我很喜欢。"
sentiment_score, snow_nlp_score = analyze_sentiment(text)
print("sentiment_score:", sentiment_score)
print("snow_nlp_score:", snow_nlp_score)
```
输出结果:
```
sentiment_score: 0.5
snow_nlp_score: 0.9758702361324463
```
阅读全文
相关推荐









