代码实现1.使用python语言,利用OpenCV库,在可口可乐瓶身上对可口可乐标志牌进行特征点匹配和定位。同时,利用相同方法在梅西踢球图上,对梅西面部进行特征点匹配以及定位。
时间: 2023-12-30 13:02:35 浏览: 207
用openCV和Python 实现图片对比,并标识出不同点的方式
5星 · 资源好评率100%
以下是可口可乐瓶身上标志牌特征点匹配和定位的示例代码:
``` python
import cv2
# 读取可口可乐瓶身图像和标志牌图像
img1 = cv2.imread('coke_bottle.jpg')
img2 = cv2.imread('coke_logo.jpg')
# 创建SIFT特征点提取器和描述符
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# 创建FLANN特征点匹配器
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# 筛选出符合条件的特征点匹配对
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
# 如果符合条件的特征点匹配对数量大于4,则进行RANSAC算法估计标志牌位置和姿态
if len(good) > 4:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist()
# 计算标志牌的四个角点在可口可乐瓶身图像中的位置
h, w = img2.shape[:2]
pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
# 在可口可乐瓶身图像上绘制出标志牌的位置和姿态
img1 = cv2.polylines(img1, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
cv2.imshow('Coke Bottle', img1)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
以下是梅西踢球图像面部特征点匹配和定位的示例代码:
``` python
import cv2
import dlib
# 读取梅西踢球图像和面部特征点标注图像
img = cv2.imread('messi_kick.jpg')
landmarks = cv2.imread('messi_landmarks.jpg', cv2.IMREAD_GRAYSCALE)
# 使用dlib的人脸检测器检测梅西的面部
detector = dlib.get_frontal_face_detector()
faces = detector(img)
# 使用dlib的68个特征点检测器提取面部特征点
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
for face in faces:
landmarks = predictor(img, face)
landmarks = np.array([(p.x, p.y) for p in landmarks.parts()])
# 创建SIFT特征点提取器和描述符
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img, None)
kp2, des2 = sift.detectAndCompute(landmarks, None)
# 创建FLANN特征点匹配器
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
# 筛选出符合条件的特征点匹配对
good = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good.append(m)
# 如果符合条件的特征点匹配对数量大于4,则进行RANSAC算法估计面部位置和姿态
if len(good) > 4:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx] for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist()
# 计算面部的四个角点在踢球图像中的位置
h, w = landmarks.shape[:2]
pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
# 在踢球图像上绘制出面部的位置和姿态
img = cv2.polylines(img, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
cv2.imshow('Messi Kick', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文