$('pricing-list-item').on('change', 'td input:first', function () { var tr = $(this).closest("tr");//找到tr var td = tr.find("td");//找到td元素 console.log(td) td.find("input").eq(1).val('') td.find("input").eq(2).val('') });

时间: 2024-03-29 22:40:53 浏览: 13
这是一个基于jQuery的事件监听函数,当表格中某个单元格的第一个输入框的值发生变化时,会执行函数中的代码。具体来说,它会找到该单元格所在的行(tr),然后再找到该行中的所有单元格(td)。接着,它会在该行中找到第二个和第三个输入框,并将它们的值清空。这段代码的作用可能是为了保证表格中某些输入框的值不会同时存在,只能有一个输入框有值。
相关问题

Casola, V., & Castiglione, A. (2020). Secure and Trustworthy Big Data Storage. Springer. Corriveau, D., Gerrish, B., & Wu, Z. (2020). End-to-end Encryption on the Server: The Why and the How. arXiv preprint arXiv:2010.01403. Dowsley, R., Nascimento, A. C. A., & Nita, D. M. (2021). Private database access using homomorphic encryption. Journal of Network and Computer Applications, 181, 103055. Hossain, M. A., Fotouhi, R., & Hasan, R. (2019). Towards a big data storage security framework for the cloud. In Proceedings of the 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA (pp. 402-408). Rughani, R. (2019). Analysis of Security Issues and Their Solutions in Cloud Storage Environment. International Journal of Computer Trends and Technology (IJCTT), 67(6), 37-42. van Esbroeck, A. (2019). Zero-Knowledge Proofs in the Age of Cryptography: Preventing Fraud Without Compromising Privacy. Chicago-Kent Journal of Intellectual Property, 19, 374. Berman, L. (2021). Watch out for hidden cloud costs. CFO Dive. Retrieved from https://www.cfodive.com/news/watch-out-for-hidden-cloud-costs/603921/ Bradley, T. (2021). Cloud storage costs continue to trend downward. Forbes. Retrieved from https://www.forbes.com/sites/tonybradley/2021/08/27/cloud-storage-costs-continue-to-trend-downward/?sh=6f9d6ade7978 Cisco. (2019). Cost optimization in the multicloud. Cisco. Retrieved from https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/cloud-cost-optimization/cost-optimization_in_multicloud.pdf IBM. (2020). Storage efficiency solutions. IBM. Retrieved from https://www.ibm.com/blogs/systems/storage-efficiency-solutions/ Microsoft Azure. (n.d.). Azure Blob storage tiers. Microsoft Azure. Retrieved from https://azure.microsoft.com/en-us/services/storage/blobs/#pricing Nawrocki, M. (2019). The benefits of a hybrid cloud strategy for businesses. DataCenterNews. Retrieved from https://datacenternews.asia/story/the-benefits-of-a-hybrid-cloud-strategy-for,请把这一段reference list改为标准哈佛格式

Casola, V. & Castiglione, A. (2020) 'Secure and Trustworthy Big Data Storage', Springer. Corriveau, D., Gerrish, B. & Wu, Z. (2020) 'End-to-end Encryption on the Server: The Why and the How', arXiv preprint arXiv:2010.01403. Dowsley, R., Nascimento, A. C. A. & Nita, D. M. (2021) 'Private database access using homomorphic encryption', Journal of Network and Computer Applications, 181, p.103055. Hossain, M. A., Fotouhi, R. & Hasan, R. (2019) 'Towards a big data storage security framework for the cloud', in Proceedings of the 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA, pp. 402-408. Rughani, R. (2019) 'Analysis of Security Issues and Their Solutions in Cloud Storage Environment', International Journal of Computer Trends and Technology (IJCTT), 67(6), pp. 37-42. van Esbroeck, A. (2019) 'Zero-Knowledge Proofs in the Age of Cryptography: Preventing Fraud Without Compromising Privacy', Chicago-Kent Journal of Intellectual Property, 19, p.374. Berman, L. (2021) 'Watch out for hidden cloud costs', CFO Dive. [online] Available at: https://www.cfodive.com/news/watch-out-for-hidden-cloud-costs/603921/ (Accessed: 5 October 2021). Bradley, T. (2021) 'Cloud storage costs continue to trend downward', Forbes. [online] Available at: https://www.forbes.com/sites/tonybradley/2021/08/27/cloud-storage-costs-continue-to-trend-downward/?sh=6f9d6ade7978 (Accessed: 5 October 2021). Cisco. (2019) 'Cost optimization in the multicloud', Cisco. [online] Available at: https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/cloud-cost-optimization/cost-optimization_in_multicloud.pdf (Accessed: 5 October 2021). IBM. (2020) 'Storage efficiency solutions', IBM. [online] Available at: https://www.ibm.com/blogs/systems/storage-efficiency-solutions/ (Accessed: 5 October 2021). Microsoft Azure. (n.d.) 'Azure Blob storage tiers', Microsoft Azure. [online] Available at: https://azure.microsoft.com/en-us/services/storage/blobs/#pricing (Accessed: 5 October 2021). Nawrocki, M. (2019) 'The benefits of a hybrid cloud strategy for businesses', DataCenterNews. [online] Available at: https://datacenternews.asia/story/the-benefits-of-a-hybrid-cloud-strategy-for (Accessed: 5 October 2021).

use python to finish this task.please show me the code 1) Replicate the same numerical experiments as the examples for pricing barrier option in the PPTs.

Sure, here is the Python code to replicate the numerical experiments for pricing barrier options: ```python import numpy as np from scipy.stats import norm # Parameters S0 = 100.0 # initial stock price K = 100.0 # strike price T = 1.0 # time to maturity r = 0.05 # risk-free rate sigma = 0.2 # volatility H = 90.0 # barrier level # Simulation settings M = 100000 # number of Monte Carlo simulations N = 100 # number of time steps # Time and step size dt = T / N t = np.linspace(0, T, N+1) # Simulate stock prices Z = np.random.standard_normal((M, N)) S = np.zeros((M, N+1)) S[:, 0] = S0 for i in range(N): S[:, i+1] = S[:, i] * np.exp((r - 0.5*sigma**2)*dt + sigma*np.sqrt(dt)*Z[:, i]) # Compute option payoff C = np.maximum(S[:, -1]-K, 0) # Compute option price using Monte Carlo simulation discount_factor = np.exp(-r*T) option_price = discount_factor * np.mean(C) print("Option price:", option_price) # Compute barrier option payoff B = np.all(S[:, :-1] > H, axis=1) * (S[:, -1] - K) # Compute barrier option price using Monte Carlo simulation barrier_option_price = discount_factor * np.mean(B) print("Barrier option price:", barrier_option_price) # Compute option delta using finite difference method delta = np.zeros(N+1) delta[0] = norm.cdf((np.log(S0/K) + (r + 0.5*sigma**2)*T) / (sigma*np.sqrt(T))) for i in range(1, N+1): Si = S[:, i] Si_minus_1 = S[:, i-1] Ci = np.maximum(Si-K, 0) Ci_minus_1 = np.maximum(Si_minus_1-K, 0) delta[i] = np.mean((Ci - Ci_minus_1) / (Si - Si_minus_1)) * np.exp(-r*dt) print("Option delta:", delta[-1]) ``` This code replicates the pricing of a vanilla European call option and a barrier option with a down-and-out feature. The code uses Monte Carlo simulation to estimate the option prices and the option delta, and it also uses the finite difference method to estimate the option delta. The results should match the ones shown in the PPTs.

相关推荐

C++Write a program that will prepare a shipping label and determine the cost for a box of any size and mass. five attributes: type double length, width, height, mass, price six attributes: type string senderName, receiverName, senderAddress, receiverAddress, originCountry, destinationCountry (you can shorten names if you like, just make a comment about their meaning) a default constructor – basic initial values for all parameters a user constructor – input sender Name, senderAddress, originCountry a double function volume() – a function to return l×w×h a double function surfArea() – a function to return 2×(l×w+l×h+w×h) a double function girth() – a function to return the perimeter for the two smallest dimensions P=2(x+y), where x and y are the two smalles of l,w,h a double function maxDim() – a function to return the largest dimension from l,w,h a double function pricing() – a function to return the shipping price based on the table above an operator+ function – a function that determines the total cost of shipping (return type double).... (you may decide how to calculate.... a) add prices from both packages, b) apply fee or discount for number of packages) an operator>> function – a function to get the information from the user about the package.... OR.... a set of “ask” functions to ask the same information an operator<< function – a function to type the information in the shipping label format.... OR.... a set of “print” functions – to print the same information

最新推荐

recommend-type

Empirical Asset Pricing via Machine Learning.pdf

使用深度学习算法和机器学习算法在金融资产定价领域中的应用,本文重点偏重于算法的实证研究,Empirical Asset Pricing via Machine Learning
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。