在MATLAB中创建自定义的注意力层
时间: 2024-10-26 16:17:05 浏览: 39
在MATLAB中,由于其不是专为大规模神经网络设计的语言,创建完整的自定义注意力层可能会比较复杂,但你可以模拟核心算法。以下是一个简化版的单头自注意力层的示例,它基于Transformer中的一般步骤:
```matlab
function output = customAttention(Q, K, V, d_model, heads, dropout)
% 矩阵尺寸
batch_size = size(Q, 1);
% 分割成多头注意力
queries = reshape(Q, [batch_size, heads, d_model / heads]);
keys = reshape(K, [batch_size, heads, d_model / heads]);
values = reshape(V, [batch_size, heads, d_model / heads]);
% 计算内积(scores)
scores = bsxfun(@times, queries, conj(keys)) ./ sqrt(d_model / heads);
% 应用softmax进行归一化
scores = softmax(scores);
% Dropout层(如果启用)
if dropout > 0
scores = dropoutLayer(scores, dropout);
end
% 投票并合并结果
context = bsxfun(@times, scores, values);
output = reshape(context, [batch_size, -1, d_model]);
end
% 函数辅助部分
function softmax = softmax(x)
e_x = exp(x - max(x(:)));
softmax = e_x ./ sum(e_x, 2);
end
```
请注意,这个示例仅适用于较小规模的数据,对于非常大的序列,你可能需要使用其他工具(如Deep Learning Toolbox的Sequence Data工具箱),或是考虑使用Python和TensorFlow等更适合这种任务的环境。
阅读全文
相关推荐


















