解释此代码import torch import random def data_iter(batch_size,features,labels): num_examples = len(features) indices = list(range(num_examples)) random.shuffle(indices) for i in range(0,num_examples,batch_size): batch_indices = torch.tensor(indices[i:min(i+batch_size,num_examples)]) yield features[batch_indices],labels[batch_indices] w = torch.normal(0,0.01,size=(p,1),requires_grad=True) b = torch.zeros(1,requires_grad=True) for epoch in range(num_epochs): for X,y in data_iter(batch_size,features,labels): y_hat = X @ w + b loss = ((y_hat-y)**2/2).mean() loss.backward() for param in [w,b]: param -= learning_rate * param.grad param.grad.zero_()
时间: 2024-04-11 08:29:29 浏览: 178
这段代码实现了一个简单的线性回归训练过程。让我们逐行解释代码的功能:
1. 导入torch库和random库:导入了PyTorch库用于张量操作和计算图,以及random库用于随机化数据顺序。
2. 定义data_iter函数:这是一个生成器函数,用于生成以指定批次大小进行迭代的数据。它接收特征(features)和标签(labels),并根据每个批次的大小将数据进行随机打乱,并返回一个批次的特征和标签。
3. 定义模型参数:使用torch.normal函数初始化了参数w和b。w是一个服从均值为0,标准差为0.01的正态分布的随机张量,形状为(p, 1),其中p是特征的数量。b是一个形状为(1,)的零张量。requires_grad=True表示需要计算梯度。
4. 训练过程:使用两个嵌套的循环进行训练。外层循环控制迭代次数,由变量num_epochs决定。内层循环通过调用data_iter函数来获取一个批次的特征X和标签y。
5. 前向传播:计算预测值y_hat,利用矩阵乘法运算`X @ w`得到预测值,并加上偏置b。
6. 计算损失:计算均方差损失函数,即预测值和实际值之间的差的平方的平均值。
7. 反向传播:通过调用loss.backward()计算损失相对于模型参数的梯度。
8. 参数更新:利用梯度下降法,通过`param -= learning_rate * param.grad`更新模型参数w和b,其中learning_rate是学习率。
9. 清零梯度:通过调用`param.grad.zero_()`将梯度清零,以便在下一次迭代中计算新的梯度。
这段代码实现了一个简单的线性回归训练过程,每个批次的数据是随机打乱的。通过多次迭代更新模型参数,可以逐步优化模型以拟合给定的特征和标签数据。
阅读全文