旅行商问题matlab算法
时间: 2023-11-30 19:43:41 浏览: 64
旅行商问题是一个经典的组合优化问题,目的是找到一条路径,使得旅行商可以在经过每个城市恰好一次的情况下,完成旅行并回到起点,同时路径的总长度最小。下面是使用matlab编写遗传算法求解TSP旅行商问题的步骤:
1.读取城市坐标数据,计算城市之间的距离矩阵。
2.初始化种群,每个个体表示一条路径,使用随机生成的方式。
3.计算每个个体的适应度,即路径长度。
4.选择优秀的个体进行交叉和变异,生成新的个体。
5.重复步骤3-4,直到达到预设的迭代次数或者找到最优解。
下面是使用matlab实现的代码:
```matlab
% 读取城市坐标数据
data = load('city_data.txt');
n = size(data, 1);
% 计算城市之间的距离矩阵
dist = zeros(n, n);
for i = 1:n
for j = i+1:n
d = norm(data(i,:) - data(j,:));
dist(i,j) = d;
dist(j,i) = d;
end
end
% 初始化种群
pop_size = 50;
pop = zeros(pop_size, n);
for i = 1:pop_size
pop(i,:) = randperm(n);
end
% 迭代次数
max_iter = 1000;
best_fitness = inf;
best_path = zeros(1, n);
for iter = 1:max_iter
% 计算适应度
fitness = zeros(1, pop_size);
for i = 1:pop_size
path = pop(i,:);
d = 0;
for j = 1:n-1
d = d + dist(path(j), path(j+1));
end
d = d + dist(path(n), path(1));
fitness(i) = d;
if d < best_fitness
best_fitness = d;
best_path = path;
end
end
% 选择优秀的个体
[sorted_fitness, idx] = sort(fitness);
elite_size = 5;
elite = pop(idx(1:elite_size),:);
% 交叉和变异
new_pop = zeros(pop_size, n);
for i = 1:pop_size
if i <= elite_size
new_pop(i,:) = elite(i,:);
else
parent1 = elite(randi(elite_size),:);
parent2 = elite(randi(elite_size),:);
child = crossover(parent1, parent2);
child = mutate(child);
new_pop(i,:) = child;
end
end
pop = new_pop;
end
% 输出结果
disp(['Best fitness: ', num2str(best_fitness)]);
disp(['Best path: ', num2str(best_path)]);
% 交叉
function child = crossover(parent1, parent2)
n = length(parent1);
child = zeros(1, n);
start = randi(n);
stop = randi(n);
if start > stop
temp = start;
start = stop;
stop = temp;
end
child(start:stop) = parent1(start:stop);
idx = find(~ismember(parent2, child));
child(idx) = parent2(idx);
end
% 变异
function child = mutate(parent)
n = length(parent);
child = parent;
if rand < 0.1
idx = randperm(n, 2);
child(idx) = fliplr(child(idx));
end
end
```
阅读全文