import numpy as np from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from PIL import Image # 加载数据集 X = [] y = [] for i in range(1000): img = Image.open(f"train/cats.{i}.jpg") img = img.resize((150, 150)) X.append(np.array(img)) y.append(0) for i in range(1000): img = Image.open(f"train/dog.{i}.jpg") img = img.resize((150, 150)) X.append(np.array(img)) y.append(1) X = np.array(X) y = np.array(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 将图像数据拉平 X_train = X_train.reshape(X_train.shape[0], -1) X_test = X_test.reshape(X_test.shape[0], -1) # 构建模型 model = SVC(kernel='linear') # 训练模型 model.fit(X_train, y_train) # 预测结果 y_pred = model.predict(X_test) # 计算准确率 acc = accuracy_score(y_test, y_pred) print(f"Accuracy: {acc}")

时间: 2023-06-15 20:06:24 浏览: 46
这段代码实现了使用SVM算法对猫狗分类问题进行训练和测试。具体流程如下: 1. 加载数据集。从文件夹中读取1000张猫和1000张狗的图片,并将它们的标签分别设为0和1,存储在X和y中。 2. 划分训练集和测试集。使用train_test_split函数将X和y分别划分为训练集和测试集,测试集大小为20%。 3. 将图像数据拉平。将每张150x150的图片转换成一维数组,方便后续模型训练。 4. 构建模型。使用SVC(kernel='linear')构建线性SVM模型。 5. 训练模型。使用fit函数对模型进行训练。 6. 预测结果。使用predict函数对测试集进行预测,得到预测结果y_pred。 7. 计算准确率。使用accuracy_score函数计算预测准确率,并输出结果。 需要注意的是,这段代码只使用了一部分的数据,训练出来的模型可能存在过拟合或欠拟合的问题。在实际应用中,需要使用更多的数据进行训练和调参。
相关问题

import os import numpy as np import cv2 import matplotlib.pyplot as plt from sklearn.svm import SVC from tqdm import tqdm from sklearn.preprocessing import StandardScaler from PIL import Image from skimage import feature, color, data from sklearn.preprocessing import LabelEncoder import random as rn from random import shuffle from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold, StratifiedKFold from sklearn.metrics import confusion_matrix, accuracy_score, classification_report from sklearn import metrics from sklearn.svm import LinearSVC

这段代码是用 Python 语言编写的,它使用了一些常见的机器学习库和图像处理库,如sklearn、numpy、cv2等。它的主要功能是实现对图像数据的特征提取和分类,具体来说,是通过提取图像的HOG特征并使用SVM分类器对图像进行分类。其中,使用了一些常见的机器学习算法和技术,如交叉验证、标签编码、混淆矩阵、分类报告等。

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)

这段代码实现了一个使用XGBoost算法进行分类的机器学习模型,并对该模型进行评估。具体步骤如下: 1. 导入需要的库:numpy、pandas、sklearn等。 2. 定义模型评估函数:evaluate_model(y_true, y_pred),该函数用于计算模型预测结果的准确率、精确率、召回率和F1分数。 3. 读取数据集:使用pandas库的read_csv()函数读取数据集。 4. 划分特征向量和标签:将数据集划分为特征向量X和标签y。 5. 划分训练集和测试集:使用sklearn库的train_test_split()函数将数据集划分为训练集和测试集。 6. 使用XGBoost算法进行分类:使用XGBClassifier类构建XGBoost分类器,并使用fit()函数将训练集拟合到该分类器中。然后,使用predict()函数对测试集进行预测,并将预测结果存储在xgb_pred中。 7. 对模型进行评估:使用evaluate_model()函数对模型进行评估,并输出准确率、精确率、召回率和F1分数等评估结果。 需要注意的是:该代码中的数据集路径可能需要修改为本地数据集路径。

相关推荐

import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.svm import SVCfrom sklearn.metrics import accuracy_score, confusion_matriximport matplotlib.pyplot as pltimport xlrd# 加载数据集并进行预处理def load_data(filename): data = pd.read_excel(filename) data.dropna(inplace=True) X = data.drop('label', axis=1) X = (X - X.mean()) / X.std() y = data['label'] return X, y# 训练SVM分类器def train_svm(X_train, y_train, kernel='rbf', C=1, gamma=0.1): clf = SVC(kernel=kernel, C=C, gamma=gamma) clf.fit(X_train, y_train) return clf# 预测新的excel文件并输出预测结果excel、精度和混淆矩阵图def predict_svm(clf, X_test, y_test, filename): y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) # 输出预测结果excel data = pd.read_excel(filename) data['predicted_label'] = pd.Series(y_pred, index=data.index) data.to_excel('predicted_result.xlsx', index=False) # 绘制混淆矩阵图 plt.imshow(cm, cmap=plt.cm.Blues) plt.title('Confusion matrix') plt.colorbar() tick_marks = np.arange(len(set(y_test))) plt.xticks(tick_marks, sorted(set(y_test)), rotation=45) plt.yticks(tick_marks, sorted(set(y_test))) plt.xlabel('Predicted Label') plt.ylabel('True Label') plt.show() return accuracy# 加载数据集并划分训练集和验证集data = pd.read_excel('data.xlsx')data.dropna(inplace=True)X = data.drop('label', axis=1)X = (X - X.mean()) / X.std()y = data['label']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 训练SVM分类器clf = train_svm(X_train, y_train)# 预测新的excel文件accuracy = predict_svm(clf, X_test, y_test, 'test_data.xlsx')# 输出精度print('Accuracy:', accuracy)改进,预测新的结果输出在新表中

import pandas as pd data = pd.read_csv(C:\Users\Administrator\Desktop\pythonsjwj\weibo_senti_100k.csv') data = data.dropna(); data.shape data.head() import jieba data['data_cut'] = data['review'].apply(lambda x: list(jieba.cut(x))) data.head() with open('stopword.txt','r',encoding = 'utf-8') as f: stop = f.readlines() import re stop = [re.sub(' |\n|\ufeff','',r) for r in stop] data['data_after'] = [[i for i in s if i not in stop] for s in data['data_cut']] data.head() w = [] for i in data['data_after']: w.extend(i) num_data = pd.DataFrame(pd.Series(w).value_counts()) num_data['id'] = list(range(1,len(num_data)+1)) a = lambda x:list(num_data['id'][x]) data['vec'] = data['data_after'].apply(a) data.head() from wordcloud import WordCloud import matplotlib.pyplot as plt num_words = [''.join(i) for i in data['data_after']] num_words = ''.join(num_words) num_words= re.sub(' ','',num_words) num = pd.Series(jieba.lcut(num_words)).value_counts() wc_pic = WordCloud(background_color='white',font_path=r'C:\Windows\Fonts\simhei.ttf').fit_words(num) plt.figure(figsize=(10,10)) plt.imshow(wc_pic) plt.axis('off') plt.show() from sklearn.model_selection import train_test_split from keras.preprocessing import sequence maxlen = 128 vec_data = list(sequence.pad_sequences(data['vec'],maxlen=maxlen)) x,xt,y,yt = train_test_split(vec_data,data['label'],test_size = 0.2,random_state = 123) import numpy as np x = np.array(list(x)) y = np.array(list(y)) xt = np.array(list(xt)) yt = np.array(list(yt)) x=x[:2000,:] y=y[:2000] xt=xt[:500,:] yt=yt[:500] from sklearn.svm import SVC clf = SVC(C=1, kernel = 'linear') clf.fit(x,y) from sklearn.metrics import classification_report test_pre = clf.predict(xt) report = classification_report(yt,test_pre) print(report) from keras.optimizers import SGD, RMSprop, Adagrad from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM, GRU model = Sequential() model.add(Embedding(len(num_data['id'])+1,256)) model.add(Dense(32, activation='sigmoid', input_dim=100)) model.add(LSTM(128)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.summary() import matplotlib.pyplot as plt import matplotlib.image as mpimg from keras.utils import plot_model plot_model(model,to_file='Lstm2.png',show_shapes=True) ls = mpimg.imread('Lstm2.png') plt.imshow(ls) plt.axis('off') plt.show() model.compile(loss='binary_crossentropy',optimizer='Adam',metrics=["accuracy"]) model.fit(x,y,validation_data=(x,y),epochs=15)

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, confusion_matrix import matplotlib.pyplot as plt import xlrd # 加载数据集并进行预处理 def load_data(filename): data = pd.read_excel(filename) data.dropna(inplace=True) X = data.drop('label', axis=1) X = (X - X.mean()) / X.std() y = data['label'] return X, y # 训练SVM分类器 def train_svm(X_train, y_train, kernel='rbf', C=1, gamma=0.1): clf = SVC(kernel=kernel, C=C, gamma=gamma) clf.fit(X_train, y_train) return clf # 预测新的excel文件并输出预测结果excel、精度和混淆矩阵图 def predict_svm(clf, X_test, y_test, filename, result_file): y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) # 输出预测结果excel data = pd.read_excel(filename) data['predicted_label'] = pd.Series(y_pred, index=data.index) data.to_excel(result_file, index=False) # 绘制混淆矩阵图 plt.imshow(cm, cmap=plt.cm.Blues) plt.title('Confusion matrix') plt.colorbar() tick_marks = np.arange(len(set(y_test))) plt.xticks(tick_marks, sorted(set(y_test)), rotation=45) plt.yticks(tick_marks, sorted(set(y_test))) plt.xlabel('Predicted Label') plt.ylabel('True Label') plt.show() return accuracy # 加载数据集并划分训练集和验证集 data = pd.read_excel('data.xlsx') data.dropna(inplace=True) X = data.drop('label', axis=1) X = (X - X.mean()) / X.std() y = data['label'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练SVM分类器 clf = train_svm(X_train, y_train) # 预测新的excel文件 accuracy = predict_svm(clf, X_test, y_test, 'test_data.xlsx', 'predicted_result.xlsx') # 输出精度 print('Accuracy:', accuracy)修改代码,多个特征变量,一个目标变量进行预测

import streamlit as st import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import streamlit_echarts as st_echarts from sklearn.metrics import accuracy_score,confusion_matrix,f1_score def pivot_bar(data): option = { "xAxis":{ "type":"category", "data":data.index.tolist() }, "legend":{}, "yAxis":{ "type":"value" }, "series":[ ] }; for i in data.columns: option["series"].append({"data":data[i].tolist(),"name":i,"type":"bar"}) return option st.markdown("mode pracitce") st.sidebar.markdown("mode pracitce") df=pd.read_csv(r"D:\课程数据\old.csv") st.table(df.head()) with st.form("form"): index_val = st.multiselect("choose index",df.columns,["Response"]) agg_fuc = st.selectbox("choose a way",[np.mean,len,np.sum]) submitted1 = st.form_submit_button("Submit") if submitted1: z=df.pivot_table(index=index_val,aggfunc = agg_fuc) st.table(z) st_echarts(pivot_bar(z)) df_copy = df.copy() df_copy.drop(axis=1,columns="Name",inplace=True) df_copy["Response"]=df_copy["Response"].map({"no":0,"yes":1}) df_copy=pd.get_dummies(df_copy,columns=["Gender","Area","Email","Mobile"]) st.table(df_copy.head()) y=df_copy["Response"].values x=df_copy.drop(axis=1,columns="Response").values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) with st.form("my_form"): estimators0 = st.slider("estimators",0,100,10) max_depth0 = st.slider("max_depth",1,10,2) submitted = st.form_submit_button("Submit") if "model" not in st.session_state: st.session_state.model = RandomForestClassifier(n_estimators=estimators0,max_depth=max_depth0, random_state=1234) st.session_state.model.fit(X_train, y_train) y_pred = st.session_state.model.predict(X_test) st.table(confusion_matrix(y_test, y_pred)) st.write(f1_score(y_test, y_pred)) if st.button("save model"): pkl_filename = "D:\\pickle_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(st.session_state.model, file) 会出什么错误

优化代码import numpy as np from PIL import Image from sklearn import svm from sklearn.model_selection import train_test_split import os import matplotlib.pyplot as plt # 定义图像文件夹路径和类别 cat_path = "cats/" dog_path = "dogs/" cat_label = 0 dog_label = 1 # 定义图像预处理函数 def preprocess_image(file_path): # 读取图像并转换为灰度图像 img = Image.open(file_path).convert('L') # 调整图像尺寸 img = img.resize((100, 100)) # 将图像转换为 Numpy 数组 img_array = np.array(img) # 将二维数组展平为一维数组 img_array = img_array.reshape(-1) return img_array # 读取猫和狗的图像并转换成 Numpy 数组 X = [] y = [] for file_name in os.listdir(cat_path): file_path = os.path.join(cat_path, file_name) img_array = preprocess_image(file_path) X.append(img_array) y.append(cat_label) for file_name in os.listdir(dog_path): file_path = os.path.join(dog_path, file_name) img_array = preprocess_image(file_path) X.append(img_array) y.append(dog_label) X = np.array(X) y = np.array(y) # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 训练 SVM 分类器 clf = svm.SVC(kernel='linear') clf.fit(X_train, y_train) # 在测试集上进行预测 y_pred = clf.predict(X_test) # 计算测试集上的准确率 accuracy = np.mean(y_pred == y_test) print("Accuracy:", accuracy) # 显示测试集中的前 16 张图像和它们的预测结果 fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(8, 8)) for i, ax in enumerate(axes.flat): # 显示图像 ax.imshow(X_test[i].reshape(100, 100), cmap='gray') # 显示预测结果和标签 if y_pred[i] == 0: ax.set_xlabel("Cat") else: ax.set_xlabel("Dog") ax.set_xticks([]) ax.set_yticks([]) plt.show()

分析以下代码#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": path = 'D:\\iris.data' # 数据文件路径 data = pd.read_csv(path, header=None) x, y = data[range(4)], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 分类器 clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr') # clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # 准确率 print (clf.score(x_train, y_train)) # 精度 print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print (clf.score(x_test, y_test)) print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function print ('decision_function:\n', clf.decision_function(x_train)) print ('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() x1_max, x2_max = x.max() x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, shading='auto', cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show()

最新推荐

recommend-type

QT5开发及实例配套源代码.zip

QT5开发及实例配套[源代码],Qt是诺基亚公司的C++可视化开发平台,本书以Qt 5作为平台,每个章节在简单介绍开发环境的基础上,用一个小实例,介绍Qt 5应用程序开发各个方面,然后系统介绍Qt 5应用程序的开发技术,一般均通过实例介绍和讲解内容。最后通过三个大实例,系统介绍Qt 5综合应用开发。光盘中包含本书教学课件和书中所有实例源代码及其相关文件。通过学习本书,结合实例上机练习,一般能够在比较短的时间内掌握Qt 5应用技术。本书既可作为Qt 5的学习和参考用书,也可作为大学教材或Qt 5培训用书。
recommend-type

grpcio-1.46.3-cp37-cp37m-musllinux_1_1_i686.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。