import numpy as np from sklearn.svm import SVC from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from PIL import Image # 加载数据集 X = [] y = [] for i in range(1000): img = Image.open(f"train/cats.{i}.jpg") img = img.resize((150, 150)) X.append(np.array(img)) y.append(0) for i in range(1000): img = Image.open(f"train/dog.{i}.jpg") img = img.resize((150, 150)) X.append(np.array(img)) y.append(1) X = np.array(X) y = np.array(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 将图像数据拉平 X_train = X_train.reshape(X_train.shape[0], -1) X_test = X_test.reshape(X_test.shape[0], -1) # 构建模型 model = SVC(kernel='linear') # 训练模型 model.fit(X_train, y_train) # 预测结果 y_pred = model.predict(X_test) # 计算准确率 acc = accuracy_score(y_test, y_pred) print(f"Accuracy: {acc}")
时间: 2023-06-15 08:06:24 浏览: 138
这段代码实现了使用SVM算法对猫狗分类问题进行训练和测试。具体流程如下:
1. 加载数据集。从文件夹中读取1000张猫和1000张狗的图片,并将它们的标签分别设为0和1,存储在X和y中。
2. 划分训练集和测试集。使用train_test_split函数将X和y分别划分为训练集和测试集,测试集大小为20%。
3. 将图像数据拉平。将每张150x150的图片转换成一维数组,方便后续模型训练。
4. 构建模型。使用SVC(kernel='linear')构建线性SVM模型。
5. 训练模型。使用fit函数对模型进行训练。
6. 预测结果。使用predict函数对测试集进行预测,得到预测结果y_pred。
7. 计算准确率。使用accuracy_score函数计算预测准确率,并输出结果。
需要注意的是,这段代码只使用了一部分的数据,训练出来的模型可能存在过拟合或欠拟合的问题。在实际应用中,需要使用更多的数据进行训练和调参。
相关问题
import os import numpy as np import cv2 import matplotlib.pyplot as plt from sklearn.svm import SVC from tqdm import tqdm from sklearn.preprocessing import StandardScaler from PIL import Image from skimage import feature, color, data from sklearn.preprocessing import LabelEncoder import random as rn from random import shuffle from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold, StratifiedKFold from sklearn.metrics import confusion_matrix, accuracy_score, classification_report from sklearn import metrics from sklearn.svm import LinearSVC
这段代码是用 Python 语言编写的,它使用了一些常见的机器学习库和图像处理库,如sklearn、numpy、cv2等。它的主要功能是实现对图像数据的特征提取和分类,具体来说,是通过提取图像的HOG特征并使用SVM分类器对图像进行分类。其中,使用了一些常见的机器学习算法和技术,如交叉验证、标签编码、混淆矩阵、分类报告等。
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt from termcolor import colored as cl import itertools from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import VotingClassifier # 定义模型评估函数 def evaluate_model(y_true, y_pred): accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, pos_label='Good') recall = recall_score(y_true, y_pred, pos_label='Good') f1 = f1_score(y_true, y_pred, pos_label='Good') print("准确率:", accuracy) print("精确率:", precision) print("召回率:", recall) print("F1 分数:", f1) # 读取数据集 data = pd.read_csv('F:\数据\大学\专业课\模式识别\大作业\数据集1\data clean Terklasifikasi baru 22 juli 2015 all.csv', skiprows=16, header=None) # 检查数据集 print(data.head()) # 划分特征向量和标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 6. XGBoost xgb = XGBClassifier(max_depth=4) y_test = np.array(y_test, dtype=int) xgb.fit(X_train, y_train) xgb_pred = xgb.predict(X_test) print("\nXGBoost评估结果:") evaluate_model(y_test, xgb_pred)
这段代码实现了一个使用XGBoost算法进行分类的机器学习模型,并对该模型进行评估。具体步骤如下:
1. 导入需要的库:numpy、pandas、sklearn等。
2. 定义模型评估函数:evaluate_model(y_true, y_pred),该函数用于计算模型预测结果的准确率、精确率、召回率和F1分数。
3. 读取数据集:使用pandas库的read_csv()函数读取数据集。
4. 划分特征向量和标签:将数据集划分为特征向量X和标签y。
5. 划分训练集和测试集:使用sklearn库的train_test_split()函数将数据集划分为训练集和测试集。
6. 使用XGBoost算法进行分类:使用XGBClassifier类构建XGBoost分类器,并使用fit()函数将训练集拟合到该分类器中。然后,使用predict()函数对测试集进行预测,并将预测结果存储在xgb_pred中。
7. 对模型进行评估:使用evaluate_model()函数对模型进行评估,并输出准确率、精确率、召回率和F1分数等评估结果。
需要注意的是:该代码中的数据集路径可能需要修改为本地数据集路径。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)