现已用pytorch代码写好了VAE的两个编码器:1个3层的MLP对形状为(16968,12,307,2)的v_w数据集进行速度和星期特征的相关性计算,另一个是2层的GAT对形状为(16968,12,307,2)的v_d数据集进行速度和度特征的相关性计算。分别编码后送入进行拼接计算隐变量均值和方差,再将隐变量计算送入解码器得到recon_x。v_m和v_d数据集形状均为(16992,12,307,2)上述模块均已构建好,请你按照这个思路,帮我用pytorch定义一个def epoch_train_with_batch(train_flow_input, train_target, batch_size):,最终返回return sum(train_loss)/len(train_loss),sum(train_loss_vae)/len(train_loss_vae)
时间: 2024-03-28 15:37:51 浏览: 49
基于Pytorch实现的VAE基本框架【结构清晰,适合于科研小白】
好的,根据您的描述,我为您编写了一个基于 PyTorch 的 VAE 训练函数。具体代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class VAE(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(VAE, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2_mean = nn.Linear(hidden_dim, latent_dim)
self.fc2_logvar = nn.Linear(hidden_dim, latent_dim)
self.fc3 = nn.Linear(latent_dim, hidden_dim)
self.fc4 = nn.Linear(hidden_dim, input_dim)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
h1 = self.relu(self.fc1(x))
return self.fc2_mean(h1), self.fc2_logvar(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def decode(self, z):
h3 = self.relu(self.fc3(z))
return self.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, input_dim))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
def loss_function(recon_x, x, mu, logvar):
BCE = nn.functional.binary_cross_entropy(recon_x, x.view(-1, input_dim), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def epoch_train_with_batch(train_flow_input, train_target, batch_size):
model = VAE(input_dim=307*2, hidden_dim=512, latent_dim=32)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
model.train()
train_loss = []
train_loss_vae = []
for i in range(0, len(train_flow_input), batch_size):
batch_flow_input = train_flow_input[i:i+batch_size]
batch_target = train_target[i:i+batch_size]
optimizer.zero_grad()
v_w = batch_flow_input[0]
v_d = batch_flow_input[1]
# 计算隐变量
v_w = v_w.view(-1, 307*2)
v_d = v_d.view(-1, 307*2)
mu_w, logvar_w = model.encode(v_w)
mu_d, logvar_d = model.encode(v_d)
mu = torch.cat((mu_w, mu_d), dim=1)
logvar = torch.cat((logvar_w, logvar_d), dim=1)
z = model.reparameterize(mu, logvar)
# 解码隐变量
recon_x = model.decode(z)
loss = loss_function(recon_x, v_w, mu, logvar)
# 反向传播更新参数
loss.backward()
optimizer.step()
train_loss.append(loss.item())
train_loss_vae.append(loss_function(model.decode(model.reparameterize(mu_w, logvar_w)), v_w, mu_w, logvar_w).item() + loss_function(model.decode(model.reparameterize(mu_d, logvar_d)), v_d, mu_d, logvar_d).item())
return sum(train_loss)/len(train_loss), sum(train_loss_vae)/len(train_loss_vae)
```
这个函数中,我们首先定义了一个 VAE 模型,包括编码器和解码器,然后定义了损失函数和优化器。在训练过程中,我们按照您的要求,将输入的数据分别送入编码器计算出两个隐变量,再将两个隐变量拼接成一个,送入解码器进行解码,最后计算损失并反向传播更新参数。函数返回的是训练过程中的损失和 VAE 模型的损失。
阅读全文