写一个代码:基于pytorch使用softmax
时间: 2024-05-25 11:18:26 浏览: 61
import torch
import torch.nn as nn
# 定义模型
class SoftmaxModel(nn.Module):
def __init__(self, input_size, num_classes):
super(SoftmaxModel, self).__init__()
self.linear = nn.Linear(input_size, num_classes)
def forward(self, x):
out = self.linear(x)
return nn.functional.softmax(out, dim=1)
# 定义数据
input_size = 5
num_classes = 3
batch_size = 2
x = torch.randn(batch_size, input_size)
# 初始化模型
model = SoftmaxModel(input_size, num_classes)
# 前向传播
output = model(x)
print(output) # 输出softmax后的结果,每行3个数,和为1
相关问题
写一个基于pytorch框架的手写数字识别的代码
以下是一个基于pytorch框架的手写数字识别的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.fc1 = nn.Linear(1024, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 1024)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
# 加载数据
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor())
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义训练函数
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = nn.functional.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 定义测试函数
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += nn.functional.nll_loss(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# 训练模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
for epoch in range(1, 11):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
```
这个代码会训练一个卷积神经网络模型,用于手写数字识别。它使用了MNIST数据集,包含了手写数字图片和对应的标签。首先定义了一个卷积神经网络模型,然后加载MNIST数据集,接着定义了训练函数和测试函数,最后使用SGD优化器训练模型。在每个epoch中,使用训练函数训练模型,然后使用测试函数测试模型的性能。最终输出测试集的平均损失和准确率。
pytorch softmax求导
在PyTorch中,可以使用autograd来计算softmax函数的导数。以下是一个示例代码:
```python
import torch
import torch.nn.functional as F
# 输入数据
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
# 计算softmax
output = F.softmax(x, dim=0)
# 计算导数
output.backward(torch.tensor([1.0, 0.5, 0.2]))
# 打印x的梯度
print(x.grad)
```
在这个例子中,我们首先定义了一个包含三个元素的张量`x`,并将其设置为需要计算梯度。然后,我们使用PyTorch的`F.softmax`函数对`x`进行softmax操作,并将结果保存在`output`中。
接下来,我们调用`output.backward()`函数计算`output`相对于输入`x`的导数,并传入导数的权重作为参数。在这里,我们传入了一个权重张量`[1.0, 0.5, 0.2]`。
最后,我们可以通过访问`x.grad`属性来获取`x`的梯度。
请注意,这里的导数计算是基于反向传播算法实现的。在调用`output.backward()`之前,你需要确保只有一个标量值作为输出,否则你可能需要指定其他参数来计算梯度。
阅读全文