srcnn代码复现pytorch
时间: 2024-09-28 07:14:19 浏览: 50
SRCNN (Super-Resolution Convolutional Neural Network)是一种经典的深度学习网络,用于图像超分辨率重建。在PyTorch中复现SRCNN,你需要首先安装必要的库,如torch、torchvision等,并了解SRCNN的基本结构,它主要包括三个部分:卷积层(Conv)、跳跃连接(Skip Connection)和非线性激活函数。
以下是简单的步骤:
1. 导入所需的模块:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
```
2. 定义SRCNN模型,通常包括两个卷积层(第一个用于特征提取,第二个用于重建高分辨率图像)和一个跳跃连接(将低分辨率输入直接添加到高分辨率输出中):
```python
class SRCNN(nn.Module):
def __init__(self, in_channels=1, out_channels=1, kernel_size=9):
super(SRCNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=kernel_size, padding=4)
self.conv2 = nn.Conv2d(64, 32, kernel_size=kernel_size, padding=4)
self.conv3 = nn.Conv2d(32, out_channels, kernel_size=kernel_size, padding=4)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.conv3(x)
return x + x * 0.5 # 跳跃连接
# 实例化并设置超参数
model = SRCNN()
in_channels = out_channels = 1 # 对于灰度图像,通道数为1
```
3. 编写训练和测试循环,加载数据和优化器:
```python
# ... 数据预处理和加载 ...
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
# 训练...
model.train()
for img_lr, img_hr in train_loader:
img_lr = img_lr.to(device)
img_hr = img_hr.to(device)
optimizer.zero_grad()
pred = model(img_lr)
loss = criterion(pred, img_hr)
loss.backward()
optimizer.step()
# 测试...
model.eval()
with torch.no_grad():
for img_lr, _ in test_loader:
img_lr = img_lr.to(device)
sr_img = model(img_lr)
```
阅读全文