flink指定两个消费者,即先是将一个数据流保存到postgresql的一个表中,再将一个计算结果保存到另一个表中
时间: 2024-03-09 16:50:53 浏览: 174
可以通过 Flink 的 DataStream API 实现这个需求。首先,你需要定义两个 PostgreSQL 数据库的连接和表信息,可以使用 Flink 的 JDBC 连接器进行连接。然后,使用 Flink 的 DataStream API 读取数据流,将数据流分别保存到两个不同的表中。具体实现可参考以下代码示例:
```java
// 导入必要的依赖
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.streaming.api.functions.sink.TwoPhaseCommitSinkFunction;
import org.apache.flink.streaming.api.functions.sink.TwoPhaseCommitSinkFunction.Context;
import org.apache.flink.streaming.api.scala.DataStream;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.jdbc.JdbcConnectionOptions;
import org.apache.flink.streaming.connectors.jdbc.JdbcSink;
import org.apache.flink.streaming.connectors.jdbc.JdbcStatementBuilder;
import org.apache.flink.streaming.connectors.jdbc.JdbcWriter;
import org.apache.flink.streaming.connectors.jdbc.JdbcWriterFactory;
import org.apache.flink.streaming.connectors.jdbc.JdbcWriterProvider;
import org.apache.flink.streaming.connectors.jdbc.JdbcXaSinkFunction;
import org.apache.flink.streaming.connectors.jdbc.JdbcXaSinkFunctionBuilder;
import org.apache.flink.streaming.connectors.jdbc.JdbcXaSinkFunctionProvider;
import org.apache.flink.streaming.connectors.jdbc.JdbcXaSinkFunction.State;
import org.apache.flink.streaming.connectors.jdbc.JdbcXaSinkFunction.StateSerializer;
import org.apache.flink.streaming.connectors.jdbc.JdbcXaSinkFunction.TransactionContext;
import org.apache.flink.streaming.connectors.jdbc.JdbcXaSinkFunction.TransactionContextSerializer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;
// 定义一个保存数据到 PostgreSQL 的 SinkFunction
class SaveToPostgreSQLSinkFunction extends RichSinkFunction<String> {
private Connection connection;
private PreparedStatement preparedStatement;
private String insertStatement = "INSERT INTO table1 (id, name) VALUES (?, ?)";
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
// 获取 PostgreSQL 数据库连接
connection = DriverManager.getConnection("jdbc:postgresql://localhost:5432/test", "user", "password");
// 创建 PreparedStatement
preparedStatement = connection.prepareStatement(insertStatement);
}
@Override
public void invoke(String value, Context context) throws Exception {
// 解析数据并设置 PreparedStatement 参数
String[] fields = value.split(",");
preparedStatement.setInt(1, Integer.parseInt(fields[0]));
preparedStatement.setString(2, fields[1]);
// 执行插入操作
preparedStatement.executeUpdate();
}
@Override
public void close() throws Exception {
super.close();
// 关闭 PreparedStatement 和数据库连接
if (preparedStatement != null) {
preparedStatement.close();
}
if (connection != null) {
connection.close();
}
}
}
// 定义一个保存计算结果到 PostgreSQL 的 SinkFunction
class SaveResultToPostgreSQLSinkFunction extends RichSinkFunction<String> {
private Connection connection;
private PreparedStatement preparedStatement;
private String insertStatement = "INSERT INTO table2 (id, result) VALUES (?, ?)";
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
// 获取 PostgreSQL 数据库连接
connection = DriverManager.getConnection("jdbc:postgresql://localhost:5432/test", "user", "password");
// 创建 PreparedStatement
preparedStatement = connection.prepareStatement(insertStatement);
}
@Override
public void invoke(String value, Context context) throws Exception {
// 解析数据并设置 PreparedStatement 参数
String[] fields = value.split(",");
preparedStatement.setInt(1, Integer.parseInt(fields[0]));
preparedStatement.setString(2, fields[2]);
// 执行插入操作
preparedStatement.executeUpdate();
}
@Override
public void close() throws Exception {
super.close();
// 关闭 PreparedStatement 和数据库连接
if (preparedStatement != null) {
preparedStatement.close();
}
if (connection != null) {
connection.close();
}
}
}
public class SaveToPostgreSQL {
public static void main(String[] args) throws Exception {
// 创建 Flink 执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置 Kafka 数据源
Properties props = new Properties();
props.setProperty("bootstrap.servers", "localhost:9092");
props.setProperty("group.id", "test");
FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("topic", new SimpleStringSchema(), props);
// 从 Kafka 中读取数据流
DataStream<String> dataStream = env.addSource(consumer);
// 将数据流保存到 PostgreSQL 的表1中
dataStream.addSink(JdbcSink.sink(
"INSERT INTO table1 (id, name) VALUES (?, ?)",
new JdbcStatementBuilder<String>() {
@Override
public void accept(PreparedStatement preparedStatement, String s) throws SQLException {
String[] fields = s.split(",");
preparedStatement.setInt(1, Integer.parseInt(fields[0]));
preparedStatement.setString(2, fields[1]);
}
},
new JdbcWriterFactory<String>() {
@Override
public JdbcWriter<String> createJdbcWriter(Connection connection) throws SQLException {
return new JdbcWriter<String>() {
@Override
public void write(Connection connection, String s) throws SQLException {
String[] fields = s.split(",");
PreparedStatement preparedStatement = connection.prepareStatement("INSERT INTO table1 (id, name) VALUES (?, ?)");
preparedStatement.setInt(1, Integer.parseInt(fields[0]));
preparedStatement.setString(2, fields[1]);
preparedStatement.executeUpdate();
}
};
}
},
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl("jdbc:postgresql://localhost:5432/test")
.withDriverName("org.postgresql.Driver")
.withUsername("user")
.withPassword("password")
.build()
));
// 将数据流计算结果保存到 PostgreSQL 的表2中
dataStream.map(new MapFunction<String, String>() {
@Override
public String map(String s) throws Exception {
String[] fields = s.split(",");
int id = Integer.parseInt(fields[0]);
String name = fields[1];
int result = id * 2;
return String.format("%d,%s,%d", id, name, result);
}
}).addSink(new SaveResultToPostgreSQLSinkFunction());
// 执行任务
env.execute("SaveToPostgreSQL");
}
}
```
以上代码示例中,我们实现了两个保存数据到 PostgreSQL 的 SinkFunction,分别是 SaveToPostgreSQLSinkFunction 和 SaveResultToPostgreSQLSinkFunction。其中,SaveToPostgreSQLSinkFunction 将数据流保存到表1中,SaveResultToPostgreSQLSinkFunction 对数据流进行计算并将结果保存到表2中。在主函数中,我们使用了 Flink 的 JDBC 连接器和 JdbcSink 工具类将数据流保存到 PostgreSQL 中。同时,我们使用了 Flink 的 DataStream API 对数据流进行计算并将计算结果保存到 PostgreSQL 中。
阅读全文