def encode(self, h, m): # 编码条目 self.remember(h, m) # 每多步训练DNN if self.memory_counter % self.training_interval == 0:#如果 self.memory_counter(记忆计数器)能够被 self.training_interval 整除,那么条件成立,执行相应的代码,当模型已经接收了足够数量的样本后,就开始进行训练。 self.learn() def learn(self): # 从所有内存中抽样批处理内存 if self.memory_counter > self.memory_size:#随机选择一组,减少数据的依赖性 sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) batch_memory = self.memory[sample_index, :]#batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]])#h_train是这批记忆的前self.net[0]个元素,即输入数据 m_train = torch.Tensor(batch_memory[:, self.net[0]:])#m_train是这批记忆的后面的元素,即标签。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr,betas = (0.09,0.999),weight_decay=0.0001)#是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss()#是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。 self.model.train() optimizer.zero_grad() predict = self.model(h_train)#得到网络的输出结果 loss = criterion(predict, m_train) loss.backward() optimizer.step() # 训练DNN self.cost = loss.item() assert(self.cost > 0) self.cost_his.append(self.cost)这个encode函数有什么用
时间: 2024-04-28 22:21:25 浏览: 111
这个 encode 函数是用于将输入数据和标签数据编码为记忆(memory)条目,以便存储在记忆库(memory)中。其中,h 表示输入数据,m 表示标签数据。每多少步训练DNN,就会调用 learn 函数对模型进行训练。如果记忆计数器能够被训练间隔整除,就开始训练模型。在 learn 函数中,会从记忆库中抽取一批记忆数据,用来训练模型。然后使用 Adam 优化器更新网络的参数,并使用二分类交叉熵损失函数计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。最后记录误差值并存储在 cost_his 列表中。这个函数的作用是实现深度强化学习中的记忆回放(memory replay)机制,以提高模型的训练效果和稳定性。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045021.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![gz](https://img-home.csdnimg.cn/images/20210720083447.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)