使用java编写flink消费kafka写入hive的demo
时间: 2024-05-09 09:21:37 浏览: 174
以下是使用Java编写Flink消费Kafka写入Hive的示例代码:
1. 导入依赖
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
```
2. 配置Kafka连接
```java
String kafkaBootstrapServers = "localhost:9092";
String kafkaTopic = "test";
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", kafkaBootstrapServers);
kafkaProps.setProperty("group.id", "flink-group");
```
3. 创建 Flink 环境和 Kafka 消费者
```java
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> kafkaStream = env.addSource(new FlinkKafkaConsumer<>(kafkaTopic, new SimpleStringSchema(), kafkaProps));
```
4. 对收到的消息进行处理
```java
DataStream<String> processedStream = kafkaStream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
// 在这里对数据进行处理,返回处理后的数据
return value;
}
});
```
5. 将处理后的数据写入 Hive
```java
String hiveTableName = "test";
String hiveMetastoreUri = "thrift://localhost:9083";
String hiveDbName = "default";
String hivePartitionColumn = "dt";
String hivePartitionValue = "20220101";
String hiveOutputPath = "/user/hive/warehouse/" + hiveDbName + ".db/" + hiveTableName + "/" + hivePartitionColumn + "=" + hivePartitionValue;
DataStream<String> hiveDataStream = processedStream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
// 在这里将数据转换为 Hive 表的格式,返回转换后的数据
return value;
}
});
// 将数据写入 Hive
hiveDataStream.addSink(new FlinkHiveOutputFormat<>(new Path(hiveOutputPath), new org.apache.hadoop.hive.ql.io.orc.OrcSerde(), new Object[]{}));
```
6. 将处理后的数据写回 Kafka
```java
String kafkaOutputTopic = "output";
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>(kafkaBootstrapServers, kafkaOutputTopic, new KeyedSerializationSchemaWrapper<>(new SimpleStringSchema()), kafkaProps);
// 将数据写回 Kafka
processedStream.addSink(kafkaProducer);
```
完整示例代码:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import java.util.Properties;
public class FlinkKafkaToHiveDemo {
public static void main(String[] args) throws Exception {
String kafkaBootstrapServers = "localhost:9092";
String kafkaTopic = "test";
Properties kafkaProps = new Properties();
kafkaProps.setProperty("bootstrap.servers", kafkaBootstrapServers);
kafkaProps.setProperty("group.id", "flink-group");
String hiveTableName = "test";
String hiveMetastoreUri = "thrift://localhost:9083";
String hiveDbName = "default";
String hivePartitionColumn = "dt";
String hivePartitionValue = "20220101";
String hiveOutputPath = "/user/hive/warehouse/" + hiveDbName + ".db/" + hiveTableName + "/" + hivePartitionColumn + "=" + hivePartitionValue;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> kafkaStream = env.addSource(new FlinkKafkaConsumer<>(kafkaTopic, new SimpleStringSchema(), kafkaProps));
DataStream<String> processedStream = kafkaStream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
// 在这里对数据进行处理,返回处理后的数据
return value;
}
});
DataStream<String> hiveDataStream = processedStream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
// 在这里将数据转换为 Hive 表的格式,返回转换后的数据
return value;
}
});
DataStream<String> kafkaOutputStream = processedStream.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
// 在这里对数据进行处理,返回处理后的数据
return value;
}
});
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>(kafkaBootstrapServers, kafkaOutputTopic, new KeyedSerializationSchemaWrapper<>(new SimpleStringSchema()), kafkaProps);
processedStream.addSink(kafkaProducer);
hiveDataStream.addSink(new FlinkHiveOutputFormat<>(new Path(hiveOutputPath), new org.apache.hadoop.hive.ql.io.orc.OrcSerde(), new Object[]{}));
env.execute("FlinkKafkaToHiveDemo");
}
}
```
阅读全文