以上代码出现numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'divide' output from dtype('float64') to dtype('uint8') with casting rule 'same_kind'
时间: 2023-08-15 20:05:55 浏览: 389
这个错误通常是因为在执行除法运算时,输出的数据类型为 `float64`,但是在将结果赋值给 `uint8` 类型的变量时,发生了类型转换错误。这是因为 `uint8` 类型只能表示整数值,而 `float64` 类型可以表示小数值。因此,将小数值转换为 `uint8` 类型会导致数据损失。
要解决这个问题,可以将结果转换为整数值,然后再将其赋值给 `uint8` 类型的变量。例如,可以使用 `int()` 函数将结果转换为整数值,然后将其赋值给 `uint8` 类型的变量:
```
import numpy as np
a = np.array([1, 2, 3, 4], dtype=np.uint8)
b = np.array([1, 2, 0, 4], dtype=np.uint8)
# divide element-wise
c = np.divide(a, b)
# convert to integer and then to uint8
d = np.uint8(np.int_(c))
print(d)
```
在这个示例中,我们将 `c` 数组转换为整数值,然后将其转换为 `uint8` 类型的数组 `d`。这样就可以避免类型转换错误,同时保留了整数值。
相关问题
numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'subtract' output from dtype('float64') to dtype('int32') with casting rule 'same_kind'
The error message indicates that you are trying to perform a subtraction operation in numpy that results in a type casting error. Specifically, you are trying to cast the output of the subtraction operation from a float64 type to an int32 type, which is not allowed with the "same_kind" casting rule.
One way to solve this issue is to explicitly specify the output data type of the operation to be float64 or int32, depending on your needs. Here is an example:
```python
import numpy as np
# create two arrays with different data types
a = np.array([1, 2, 3], dtype=np.int32)
b = np.array([0.5, 1.5, 2.5], dtype=np.float64)
# perform subtraction operation with explicit output data type
c = np.subtract(a, b, dtype=np.float64)
# print result
print(c)
```
In this example, we explicitly specify the output data type of the subtraction operation to be float64 using the `dtype` parameter. This allows the operation to complete without any casting errors.
Alternatively, you can also use the `astype()` method to convert the data type of the array after the operation has completed. For example:
```python
import numpy as np
# create two arrays with different data types
a = np.array([1, 2, 3], dtype=np.int32)
b = np.array([0.5, 1.5, 2.5], dtype=np.float64)
# perform subtraction operation and convert result to int32
c = np.subtract(a, b).astype(np.int32)
# print result
print(c)
```
In this example, we perform the subtraction operation first and then convert the data type of the result to int32 using the `astype()` method. This allows us to perform the operation without any casting errors and then convert the result to the desired data type.
pos += v * dt numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'add' output from dtype('float64') to dtype('int32') with casting rule 'same_kind'
这个错误是因为您正在使用NumPy中的ufunc,将浮点数与整数相加,导致输出的结果类型与输入类型不匹配。默认情况下,NumPy不会执行此类类型转换,因为它可能会导致精度丢失或不一致。您可以通过将输出类型显式转换为整数来解决此问题,例如:
```python
pos = pos.astype(int) + (v * dt).astype(int)
```
或者您可以使用向下取整运算符“//”而不是除法运算符“/”,这样输出将始终是整数类型,例如:
```python
pos += (v * dt) // 1 # // 1 确保结果是整数类型
```
另一种解决方法是在计算之前将dt转换为整数类型,例如:
```python
pos += v * dt.astype(int)
```
这些解决方案中的任何一个都应该可以解决您遇到的问题。
阅读全文