resnest50解释
时间: 2023-09-15 12:16:19 浏览: 105
ResNeSt-50 是一种深度神经网络模型,它使用了一种新型的网络结构设计,称为“ResNeSt”(ResNet的集成)。
ResNeSt-50 是基于 ResNet-50 构建的模型,它在保留 ResNet 的基本结构和特点的同时,引入了新的模块化设计,使网络更加高效和精确。
ResNeSt-50 还使用了一种新的特征聚合方法,称为“Split-Attention”,它能够更好地捕捉不同特征之间的相互依赖关系,从而提高模型的性能。
总的来说,ResNeSt-50 是一种创新性的深度学习模型,旨在提高计算机视觉任务的准确性和效率。
相关问题
ResNeSt-50
ResNeSt-50是一个用于图像分类的深度神经网络模型。它是在ResNet的基础上进行了改进和优化。ResNeSt-50的网络结构由多个层组成,其中的layer1是其中的一层。具体的结构可以通过查看resnest50的源码来获取。你可以使用resnest.torch库中的resnest50模块来导入并使用ResNeSt-50模型。通过设置pretrained参数为True,可以加载预训练的权重文件来使用模型。对于预训练权重文件的加载过程,程序会根据文件名查找对应的url地址进行在线下载和加载。在预训练权重文件的字典中,每个模型都有一个相应的hash值,用于验证文件的完整性。ResNeSt-50的预训练权重文件可以通过"https://s3.us-west-1.wasabisys.com/resnest/torch/resnest50-528c19ca.pth"地址进行下载。
请帮我写 1通道resnest50的对比学习模型,要求不借助resnest.torch
好的,这里是一个使用PyTorch实现的1通道resnest50的对比学习模型:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet50(num_classes=10):
return ResNet(Bottleneck, [3,4,6,3], num_classes)
def ResNet101(num_classes=10):
return ResNet(Bottleneck, [3,4,23,3], num_classes)
def ResNet152(num_classes=10):
return ResNet(Bottleneck, [3,8,36,3], num_classes)
```
这个模型使用了ResNet的基本结构,并在其中使用了1通道的输入,同时没有使用预训练的resnest.torch模型。你可以通过调用`ResNet50()`函数来创建一个ResNet50模型,其中num_classes参数指定了输出类别数。
阅读全文