class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码怎么改可以利用共线方程将地面点坐标反算其在原始航片的像素坐标
时间: 2024-02-27 11:58:07 浏览: 64
对Python中class和instance以及self的用法详解
要将地面点坐标反算其在原始航片的像素坐标,需要知道航片的外方位元素和内方位元素。假设已知了航片的外方位元素和内方位元素,可以按照以下步骤修改代码:
1. 在SpiralIterator类中添加一个transform方法,用于将地面点坐标转换为像素坐标:
```
def transform(self, x, y, z):
# 将地面点坐标转换为相机坐标系下的坐标
Xc = np.array([[x], [y], [z], [1]])
Xt = np.dot(self.P, Xc)
u = Xt[0, 0] / Xt[2, 0]
v = Xt[1, 0] / Xt[2, 0]
# 将相机坐标系下的坐标转换为像素坐标
u0 = self.K[0, 2]
v0 = self.K[1, 2]
fu = self.K[0, 0]
fv = self.K[1, 1]
x_pixel = int(np.round(fu * u + u0))
y_pixel = int(np.round(fv * v + v0))
return x_pixel, y_pixel
```
2. 在SpiralIterator类的init方法中添加外方位元素和内方位元素的参数,并计算相机矩阵P和内参数矩阵K:
```
def __init__(self, source, x=810, y=500, length=None, R=None, t=None, f=None, cx=None, cy=None):
self.source = source
self.row = np.shape(self.source)[0]
self.col = np.shape(self.source)[1]
if length:
self.length = min(length, np.size(self.source))
else:
self.length = np.size(self.source)
if x:
self.x = x
else:
self.x = self.row // 2
if y:
self.y = y
else:
self.y = self.col // 2
self.i = self.x
self.j = self.y
self.iteSize = 0
# 计算相机矩阵P和内参数矩阵K
if R is not None and t is not None and f is not None and cx is not None and cy is not None:
self.P = np.hstack((R, t))
self.K = np.array([[f, 0, cx], [0, f, cy], [0, 0, 1]])
else:
self.P = None
self.K = None
geo_transform = dsm_data.GetGeoTransform()
self.x_origin = geo_transform[0]
self.y_origin = geo_transform[3]
self.pixel_width = geo_transform[1]
self.pixel_height = geo_transform[5]
```
3. 在while循环中调用transform方法将地面点坐标转换为像素坐标:
```
while spiral_iterator.hasNext():
x, y, z = spiral_iterator.get()
if spiral_iterator.P is not None and spiral_iterator.K is not None:
x_pixel, y_pixel = spiral_iterator.transform(x, y, z)
print(f'Value at ({x_pixel},{y_pixel}):{z}')
else:
print(f'Value at ({x},{y}):{z}')
```
需要根据具体的外方位元素和内方位元素来设置R、t、f、cx和cy的值。如果不知道这些参数,可以考虑使用摄影测量软件进行外方位元素和内方位元素的计算。
阅读全文