帮我用汇编语言编写两位数码管秒表程序

时间: 2023-08-10 22:08:27 浏览: 93
好的,下面是一个简单的两位数码管秒表程序,使用8051单片机和常见的共阳极数码管进行控制。此程序每秒更新一次秒表,最多计时99秒,到达99秒后会重新从0开始计时。 ``` ORG 0000H ; 程序入口地址 MOV P1, #0FFH ; 将P1口设为输出口 MOV P2, #0FFH ; 将P2口设为输出口 MOV TMOD, #01H ; 将计时器0设为模式1 SETB TR0 ; 启动计时器0 MOV R0, #0 ; 初始化秒表计时器 MAIN: JB TF0, UPDATE_TIME ; 检查计时器是否溢出 SJMP MAIN ; 否则继续等待计时器中断 UPDATE_TIME: CLR TF0 ; 清除计时器溢出标志 INC R0 ; 秒表计时器加1 CJNE R0, #100, UPDATE_DISPLAY ; 如果还没到99秒,更新数码管显示 MOV R0, #0 ; 如果到达99秒,重新计时 UPDATE_DISPLAY: MOV A, R0 ; 将秒表计时器的值移动到累加器 MOV R2, #10 ; 将R2设置为10,用于将秒表计时器的十位数值转换为BCD码 DIV AB ; 将秒表计时器的值除以10 MOV R1, A ; 将商移动到R1寄存器,即秒表计时器的十位数值 MOV A, R0 ; 将秒表计时器的值再次移动到累加器 MOV R2, #10 ; 将R2设置为10,用于将秒表计时器的个位数值转换为BCD码 ANL A, #0FH ; 将秒表计时器的值与0FH进行按位与运算,提取个位数值 MOV P1, #0FFH ; 将P1口恢复为全1状态 MOV P2, #0FFH ; 将P2口恢复为全1状态 MOV DPTR, #TABLE ; 将DPTR寄存器指向数码管显示表 MOVC A, @A+DPTR ; 从表中读取十位数值对应的BCD码 MOV P1, A ; 将BCD码输出到P1口,控制十位数码管显示 MOV A, R1 ; 将十位数值移动到累加器 MOVC A, @A+DPTR ; 从表中读取个位数值对应的BCD码 MOV P2, A ; 将BCD码输出到P2口,控制个位数码管显示 SJMP MAIN ; 继续等待计时器中断 TABLE: ; 数码管显示表 DB 0C0H, 0F9H, 0A4H, 0B0H, 099H, 092H, 082H, 0F8H, 080H, 090H END ; 程序结束 ``` 这个程序使用了计时器0的模式1来产生1秒的计时中断。在中断处理程序中,程序会检查计时器是否溢出,如果溢出则将秒表计时器加1。如果秒表计时器没有到达99秒,程序会将秒表计时器的十位数值和个位数值转换为BCD码,并通过P1口和P2口输出到数码管。如果秒表计时器到达99秒,则重新从0开始计时。 请注意,这只是一个简单的示例程序,可能需要根据你的具体硬件设置和需求进行修改。

相关推荐

最新推荐

recommend-type

用汇编语言编写数字秒表

用汇编语言编写数字秒表 以下是根据给定的文件信息生成的知识点: 一、汇编语言基本概念 * 汇编语言是一种低级编程语言,使用符号代码来表示机器语言指令。 * 汇编语言编写数字秒表需要了解微机原理和电子文档的...
recommend-type

51单片机步进电机控制汇编语言程序

4. 汇编语言编程:本程序使用汇编语言编程,通过代码来控制步进电机的转速。 5. 步进电机控制原理:步进电机的转速控制是通过调整控制信号的循环次数来实现的,控制信号的循环次数决定了步进电机的转速。 6. 8253...
recommend-type

七段数码管计数器 汇编程序

【七段数码管计数器汇编程序】的实验旨在...总的来说,这个实验提供了实践经验,使学生能够深入理解8255A接口的工作机制,以及如何编写汇编程序来控制七段数码管的显示,同时增强了他们的问题解决能力和程序调试技巧。
recommend-type

用汇编语言编写的电子琴程序

在这个实验中,我们探讨了如何使用汇编语言编写一个简单的电子琴程序,通过8253定时器和8255可编程接口芯片来产生不同频率的音频信号,模拟出不同的音阶。以下是该程序涉及的主要知识点: 1. **8253定时器**:8253...
recommend-type

如何用汇编语言编写月历显示程序

在本文中,我们将深入探讨如何使用汇编语言编写月历显示程序。这个程序涉及的关键知识点包括输入处理、合法性检查、日期计算以及字符显示。以下是详细的技术解析: 1. 输入处理: - 输入格式:用户需按照"yyyy.mm...
recommend-type

AirKiss技术详解:无线传递信息与智能家居连接

AirKiss原理是一种创新的信息传输技术,主要用于解决智能设备与外界无物理连接时的网络配置问题。传统的设备配置通常涉及有线或无线连接,如通过路由器的Web界面输入WiFi密码。然而,AirKiss技术简化了这一过程,允许用户通过智能手机或其他移动设备,无需任何实际连接,就能将网络信息(如WiFi SSID和密码)“隔空”传递给目标设备。 具体实现步骤如下: 1. **AirKiss工作原理示例**:智能插座作为一个信息孤岛,没有物理连接,通过AirKiss技术,用户的微信客户端可以直接传输SSID和密码给插座,插座收到这些信息后,可以自动接入预先设置好的WiFi网络。 2. **传统配置对比**:以路由器和无线摄像头为例,常规配置需要用户手动设置:首先,通过有线连接电脑到路由器,访问设置界面输入运营商账号和密码;其次,手机扫描并连接到路由器,进行子网配置;最后,摄像头连接家庭路由器后,会自动寻找厂商服务器进行心跳包发送以保持连接。 3. **AirKiss的优势**:AirKiss技术简化了配置流程,减少了硬件交互,特别是对于那些没有显示屏、按键或网络连接功能的设备(如无线摄像头),用户不再需要手动输入复杂的网络设置,只需通过手机轻轻一碰或发送一条消息即可完成设备的联网。这提高了用户体验,降低了操作复杂度,并节省了时间。 4. **应用场景扩展**:AirKiss技术不仅适用于智能家居设备,也适用于物联网(IoT)场景中的各种设备,如智能门锁、智能灯泡等,只要有接收AirKiss信息的能力,它们就能快速接入网络,实现远程控制和数据交互。 AirKiss原理是利用先进的无线通讯技术,结合移动设备的便利性,构建了一种无需物理连接的设备网络配置方式,极大地提升了物联网设备的易用性和智能化水平。这种技术在未来智能家居和物联网设备的普及中,有望发挥重要作用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

交叉验证全解析:数据挖掘中的黄金标准与优化策略

![交叉验证全解析:数据挖掘中的黄金标准与优化策略](https://img-blog.csdnimg.cn/img_convert/eff0a03452b18f6b259f99cebef24bd9.png) # 1. 交叉验证的基本概念和重要性 ## 1.1 交叉验证的定义 交叉验证是一种统计方法,用于评估并改进机器学习模型的泛化能力。它通过将数据集分为几个小的“折”(或称为“子集”),然后迭代使用这些数据子集来训练和测试模型,从而得到模型性能的更准确估计。 ## 1.2 交叉验证的重要性 在机器学习过程中,我们通常面临一个重要的问题:模型可能对训练数据过度拟合,而不能很好地推广到新数据
recommend-type

在交换机上创建 VLAN10、VLAN20和VLAN30,将交换机 B 的 2-5 接口加入到 VLAN 10 中 用ensp写出配置命令

在交换机上配置VLAN并分配接口到特定的VLAN中,通常需要登录到交换机的命令行界面。以下是在华为交换机上使用eNSP(Enterprise Network Simulation Platform,企业网络模拟平台)模拟器进行VLAN配置的基本步骤和命令: 首先,进入系统视图: ``` system-view ``` 然后创建VLAN10、VLAN20和VLAN30: ``` vlan 10 vlan 20 vlan 30 ``` 接下来,将交换机B的2到5端口加入到VLAN10中,假设交换机B的接口编号为GigabitEthernet0/0/2至GigabitEthernet0/0/5
recommend-type

Hibernate主键生成策略详解

"Hibernate各种主键生成策略与配置详解" 在关系型数据库中,主键是表中的一个或一组字段,用于唯一标识一条记录。在使用Hibernate进行持久化操作时,主键的生成策略是一个关键的配置,因为它直接影响到数据的插入和管理。以下是Hibernate支持的各种主键生成策略的详细解释: 1. assigned: 这种策略要求开发者在保存对象之前手动设置主键值。Hibernate不参与主键的生成,因此这种方式可以跨数据库,但并不推荐,因为可能导致数据一致性问题。 2. increment: Hibernate会从数据库中获取当前主键的最大值,并在内存中递增生成新的主键。由于这个过程不依赖于数据库的序列或自增特性,它可以跨数据库使用。然而,当多进程并发访问时,可能会出现主键冲突,导致Duplicate entry错误。 3. hilo: Hi-Lo算法是一种优化的增量策略,它在一个较大的范围内生成主键,减少数据库交互。在每个session中,它会从数据库获取一个较大的范围,然后在内存中分配,降低主键碰撞的风险。 4. seqhilo: 类似于hilo,但它使用数据库的序列来获取范围,适合Oracle等支持序列的数据库。 5. sequence: 这个策略依赖于数据库提供的序列,如Oracle、PostgreSQL等,直接使用数据库序列生成主键,保证全局唯一性。 6. identity: 适用于像MySQL这样的数据库,它们支持自动增长的主键。Hibernate在插入记录时让数据库自动为新行生成主键。 7. native: 根据所连接的数据库类型,自动选择最合适的主键生成策略,如identity、sequence或hilo。 8. uuid: 使用UUID算法生成128位的唯一标识符,适用于分布式环境,无需数据库支持。 9. guid: 类似于uuid,但根据不同的实现可能会有所不同,通常在Windows环境下生成的是GUID字符串。 10. foreign: 通过引用另一个表的主键来生成当前表的主键,适用于关联实体的情况。 11. select: 在插入之前,通过执行SQL查询来获取主键值,这种方式需要开发者提供定制的SQL语句。 12. 注释方式配置: 可以通过在Java实体类的@Id和@GeneratedValue注解中指定generator属性来配置自定义的主键生成策略。 13. 小结: Hibernate的主键生成策略选择应基于数据库特性、性能需求以及是否需要跨数据库兼容等因素。在实际应用中,需要根据项目具体需求选择最适合的策略。 注意,合理选择主键生成策略对于数据库性能和数据一致性至关重要。例如,increment策略在多进程环境下可能会出现问题,而sequence和identity策略则更安全,但可能不适合所有数据库系统。因此,开发者应充分理解每种策略的优缺点,并结合实际情况作出决策。