p1 = plt.bar(range(1, len(sample_1)+1), height = sample_1, tick_label = iris_data.feature_names, width=0.3) plt.ylabel('cm') plt.title('bar of first data') plt.show()
时间: 2024-02-29 20:57:09 浏览: 57
您的第二个问题是这段代码的作用是什么?
这段代码使用matplotlib库中的pyplot模块绘制了一个柱状图。其中,使用plt.bar函数将样本1的特征向量sample_1绘制成一个柱状图,x轴为1到4,y轴为该特征的值。同时,使用tick_label参数将每个柱子的标签设置为对应的特征名(从iris_data.feature_names中取得)。接着,使用plt.ylabel函数设置y轴的标签为“cm”,使用plt.title函数设置图的标题为“bar of first data”。最后,使用plt.show函数显示图形。这段代码的作用是展示第一个样本的4个特征的取值情况,以便对鸢尾花数据集有一个初步的了解。
相关问题
f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') for i in range(6): client_dataset = dataset.shuffle(buffer_size=len(train_images)) client_dataset = dataset.batch(batch_size=10) example = next(iter(client_dataset)) label = example['label'].numpy() unique_values, value_counts = np.unique(label, return_counts=True) plt.bar(unique_values, value_counts) plt.title('Client {}'.format(i)) plt.show()该段代码中如何修改实现使得输出的直方图呈现2*3的排列
把for循环中的i变量改为两个变量row和col,表示行和列的数量,然后用嵌套的for循环输出直方图,并在外层循环前面添加subplot方法,修改后的代码如下:
```
f = plt.figure(figsize=(12, 7))
f.suptitle('Label Counts for a Sample of Clients')
row = 2
col = 3
for i in range(row * col):
client_dataset = dataset.shuffle(buffer_size=len(train_images))
client_dataset = dataset.batch(batch_size=10)
example = next(iter(client_dataset))
label = example['label'].numpy()
unique_values, value_counts = np.unique(label, return_counts=True)
plt.subplot(row, col, i+1)
plt.bar(unique_values, value_counts)
plt.title('Client {}'.format(i))
plt.show()
```
f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') row = 2 col = 3 for i in range(row * col): client_dataset = dataset.shuffle(buffer_size=len(train_images)) client_dataset = dataset.batch(batch_size=10) example = next(iter(client_dataset)) label = example['label'].numpy() unique_values, value_counts = np.unique(label, return_counts=True) plt.subplot(row, col, i+1) plt.bar(unique_values, value_counts) plt.title('Client {}'.format(i)) plt.show()该段代码中如何修改实现直方图中每列数据颜色不一样
您可以按照如下方法修改代码,实现直方图中每列数据颜色不一样:
1. 导入 colormap 模块:`from matplotlib import cm`
2. 定义颜色序列:`colors = cm.rainbow(np.linspace(0, 1, row * col))`
3. 在 for 循环中,为每个子图指定一种颜色:`plt.bar(unique_values, value_counts, color=colors[i])`
修改后的代码如下:
```
from matplotlib import pyplot as plt
from matplotlib import cm
f = plt.figure(figsize=(12, 7))
f.suptitle('Label Counts for a Sample of Clients')
row = 2
col = 3
colors = cm.rainbow(np.linspace(0, 1, row * col))
for i in range(row * col):
client_dataset = dataset.shuffle(buffer_size=len(train_images))
client_dataset = dataset.batch(batch_size=10)
example = next(iter(client_dataset))
label = example['label'].numpy()
unique_values, value_counts = np.unique(label, return_counts=True)
plt.subplot(row, col, i + 1)
plt.bar(unique_values, value_counts, color=colors[i])
plt.title('Client {}'.format(i))
plt.show()
```
阅读全文