stm32产生方波 三角波
时间: 2023-05-19 15:01:15 浏览: 134
对于产生方波和三角波的问题,可以使用STM32的定时器和DAC模块来实现。具体实现方法可以参考STM32的官方文档和相关的开发板资料。如果您需要更具体的代码实现,可以在网上搜索相关的代码示例或者咨询专业的嵌入式开发人员。
相关问题
基于stm32产生pwm波模拟输出方波,三角波和正弦波的程序编码
以下是基于STM32产生PWM波形的程序示例,其中包括方波、三角波和正弦波:
```c
#include "stm32f10x.h"
#define PI 3.1415926
#define SAMPLE_NUM 256
uint16_t sin_table[SAMPLE_NUM];
void TIM3_PWM_Init(uint16_t arr, uint16_t psc);
void TIM3_DAC_Init(uint16_t arr, uint16_t psc);
void TIM3_Sin_Init(uint16_t arr, uint16_t psc);
void Sin_Table_Init(void);
int main(void)
{
// 初始化系统时钟
SystemInit();
// 初始化PWM波形输出
TIM3_PWM_Init(1000 - 1, 72 - 1);
// 初始化DAC波形输出
TIM3_DAC_Init(1000 - 1, 72 - 1);
// 初始化正弦波表格
Sin_Table_Init();
// 初始化正弦波输出
TIM3_Sin_Init(1000 - 1, 72 - 1);
while (1)
{
}
}
// 初始化PWM波形输出
void TIM3_PWM_Init(uint16_t arr, uint16_t psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
// 使能TIM3和GPIOB时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
// 配置PB5为复用输出PWM波形
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// 定时器TIM3初始化
TIM_TimeBaseStructure.TIM_Period = arr;
TIM_TimeBaseStructure.TIM_Prescaler = psc;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
// PWM模式初始化
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = arr / 2;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
// 使能TIM3预装载寄存器ARR和CCR2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
// 启动TIM3
TIM_Cmd(TIM3, ENABLE);
}
// 初始化DAC波形输出
void TIM3_DAC_Init(uint16_t arr, uint16_t psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
DAC_InitTypeDef DAC_InitStructure;
// 使能TIM3、GPIOB和DAC时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_DAC, ENABLE);
// 配置PB4为复用输出DAC波形
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// 定时器TIM3初始化
TIM_TimeBaseStructure.TIM_Period = arr;
TIM_TimeBaseStructure.TIM_Prescaler = psc;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
// PWM模式初始化
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
// 使能TIM3预装载寄存器ARR和CCR2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
// DAC通道1初始化
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T2_TRGO;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
// 启动TIM3
TIM_Cmd(TIM3, ENABLE);
// 启动DAC
DAC_Cmd(DAC_Channel_1, ENABLE);
}
// 初始化正弦波表格
void Sin_Table_Init(void)
{
uint16_t i;
for (i = 0; i < SAMPLE_NUM; i++)
{
sin_table[i] = (uint16_t)(2048 * (1 + sin(i * PI / 128)));
}
}
// 初始化正弦波输出
void TIM3_Sin_Init(uint16_t arr, uint16_t psc)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
DAC_InitTypeDef DAC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
// 使能TIM3、GPIOB、DMA1和DAC时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_DAC, ENABLE);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
// 配置PB4为复用输出DAC波形
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// 定时器TIM3初始化
TIM_TimeBaseStructure.TIM_Period = arr;
TIM_TimeBaseStructure.TIM_Prescaler = psc;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
// PWM模式初始化
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
// 使能TIM3预装载寄存器ARR和CCR2
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM3, ENABLE);
// DAC通道1初始化
DAC_InitStructure.DAC_Trigger = DAC_Trigger_T2_TRGO;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
// DMA1通道3初始化
DMA_DeInit(DMA1_Channel3);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&DAC->DHR12R1;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)sin_table;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
DMA_InitStructure.DMA_BufferSize = SAMPLE_NUM;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel3, &DMA_InitStructure);
// 启动TIM3
TIM_Cmd(TIM3, ENABLE);
// 启动DAC
DAC_Cmd(DAC_Channel_1, ENABLE);
// 启动DMA
DMA_Cmd(DMA1_Channel3, ENABLE);
}
```
在上述代码中,我们使用了TIM3定时器和DAC模块来产生PWM波形、三角波和正弦波。其中,PWM波形和三角波的产生方式类似,都是使用定时器的PWM模式,而正弦波的产生则是通过DAC模块配合DMA传输正弦波表格数据实现的。需要注意的是,在使用DAC模块时,我们需要将DMA的传输方向设置为“外设作为数据传输目的地”,也就是将正弦波数据发送到DAC的数据寄存器中。
基于stm32产生pwm波模拟输出方波,三角波和正弦波的项目需求分析
这个项目的主要目标是使用STM32控制器产生不同类型的PWM波形,包括方波、三角波和正弦波。为了实现这个目标,需要进行以下分析:
1. STM32控制器的选择:需要选择适合产生PWM波的STM32控制器,这需要考虑到控制器的计时器、时钟频率和IO口数量等因素。
2. 波形生成算法:需要使用合适的算法来生成方波、三角波和正弦波。可以使用查表法、数学函数法或者其他合适的算法。
3. 输出电路设计:需要设计合适的输出电路,将STM32产生的PWM信号转换为模拟信号输出。这需要考虑到输出电路的阻抗、滤波等因素。
4. 控制程序设计:需要编写合适的控制程序,使STM32能够产生不同类型的PWM波形。这需要考虑到控制程序的实时性、稳定性和可靠性等因素。
5. 测试与调试:需要进行充分的测试与调试,确保产生的PWM波形符合要求,并且能够稳定地输出模拟信号。
总之,这个项目需要进行全面的需求分析和技术方案设计,才能够实现预期的效果。
阅读全文